Resistant starch and thermal, morphological and textural properties of heat-moisture treated rice starches with high-, medium- and low-amylose content

2011 ◽  
Vol 64 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Elessandra da Rosa Zavareze ◽  
Shanise L. Mello El Halal ◽  
Diego G. de los Santos ◽  
Elizabete Helbig ◽  
Juliane Mascarenhas Pereira ◽  
...  
2021 ◽  
Vol 247 (3) ◽  
pp. 707-718
Author(s):  
Maria Di Cairano ◽  
Marisa Carmela Caruso ◽  
Fernanda Galgano ◽  
Fabio Favati ◽  
Ndy Ekere ◽  
...  

AbstractThere is a need to develop low-sugar healthy products. The aim of this research was to evaluate the effect of maltitol and inulin as sucrose replacement alongside resistant starch (RS) and green banana flour (GBF) on the texture and physical properties of gluten-free doughs and biscuits formulated with buckwheat, sorghum and lentil flours. These properties are important to predict the dough workability, how easy the biscuits could be mass-produced and determine consumers’ acceptability. Results showed that partial and complete substitution of sucrose could be achieved and appropriate concentration of resistant starch or green banana flour contributed to better dough and biscuit texture. RS content showed the biggest influence on dough stickiness and biscuit hardness and could be used to correct the negative effect of sucrose replacement and to maximise both the dough processability and biscuit acceptability.


2020 ◽  
Author(s):  
Adam Schoen ◽  
Anupama Joshi ◽  
Vijay K Tiwari ◽  
Bikram S. Gill ◽  
Nidhi Rawat

Abstract Background: Lack of nutritionally appropriate foods is one of the leading causes of obesity in the US and worldwide. Wheat (Triticum aestivum) provides 20% of the calories consumed daily across the globe. The nutrients in the wheat grain come primarily from the starch composed of amylose and amylopectin. Resistant starch content, which is known to have significant human health benefits, can be increased by modifying starch synthesis pathways. Starch synthase enzyme SSIIa, also known as starch granule protein isoform-1 (SGP-1), is integral to the biosynthesis of the branched and readily digestible glucose polymer amylopectin. The goal of this work was to develop a triple null mutant genotype for SSIIa locus in the elite hard red winter wheat variety ‘Jagger’ and evaluate the effect of the knock-out mutations on resistant starch content in grains with respect to wild type. Results: Knock-out mutations in SSIIa in the three genomes of wheat variety ‘Jagger’ were identified using TILLING. Subsequently, these loss-of function mutations on A, B, and D genomes were combined by crossing to generate a triple knockout mutant genotype Jag-ssiia-∆ABD. The Jag-ssiia-∆ABD had an amylose content of 35.70% compared to 31.15% in Jagger, leading to ~118% increase in resistant starch in the Jag-ssiia-∆ABD genotype of Jagger wheat. The single individual genome mutations also had various effects on starch composition. Conclusions: Our full null Jag-ssiia-∆ABD mutant showed a significant increase in RS without the shriveled grain phenotype seen in other ssiia knockouts in elite wheat cultivars. Moreover, this study shows the potential for developing nutritionally improved foods in a non-GM approach. Since all the mutants have been developed in an elite wheat cultivar, their adoption in production and supply will be feasible in future.


2007 ◽  
Vol 90 (6) ◽  
pp. 1628-1634 ◽  
Author(s):  
Tatsuya Morita ◽  
Yusuke Ito ◽  
Ian Lewis Brown ◽  
Ryuichi Ando ◽  
Shuhachi Kiriyama

Abstract Digestibility of maize starch granules with different amylose content (AL-0, 22, 54, 68, 80, or 90) was investigated. Measurement of the in vivo resistant starch (RS) content of the starches was performed using surgically prepared ileorectostomized rats. The rats were fed a purified diet containing one of the starches at 652.5 g/kg diet. The in vivo RS content was determined based on the fecal starch excretion. The dietary fiber (DF) value increased as a function of the amylose content in the starch and showed a positive linear correlation with the gelatinization temperature of the granules. In contrast, the in vitro RS content was likely to depend on both the surface area and amylose contents of the starch granules. The maximum in vitro RS content was obtained with AL-68 (54.4). In vivo RS content showed a significant correlation with the amount of in vitro RS but not in respect to the DF detected. The in vivo RS content of AL-68 (43.4) was higher than that found in AL-90 (37.8). A profound gap was observed for AL-54 between the amount of DF (6.4) and RS (in vitro = 46.6 and in vivo = 40.9) present. The results suggest that both in vitro and in vivo digestibility of maize starch is affected by the amylose content and surface area of the granules. The current evaluation suggests that the physiological occurrence of RS from maize starch might be predictable by reference to the in vitro RS value.


2012 ◽  
Vol 44 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Marija Milašinović Šeremešić ◽  
Ljubica Dokić ◽  
Ivana Nikolić ◽  
Milica Radosavljević ◽  
Dragana Šoronja Simović

2015 ◽  
Vol 15 (3) ◽  
pp. 295-304 ◽  
Author(s):  
Wiwit Sri Werdi Pratiwi ◽  
Anil Kumar Anal ◽  
Surya Rosa Putra

Indonesia is one of the biggest central distributions of sago starch. There are some characteristics of sago starch which make it difficult to use in variation of foods. In this study, resistant starch type III (RS3) was produced from sago starch by using lintnerization-autoclaving (LA). Physicochemical characterizations of RS3 were compared by native sago starch (NA), hydrolyzed starch by distilled water (DW) and lintnerized starch (L). Amylose content decreased after hydrolyzed by DW and L, but increasing by using LA. Protein and fat contents decreased after hydrolysis, but crude fiber content increasing, the highest value was obtained lintnerized-autoclaved starch. Lintnerized-autoclaved starch has more compact and rigid structure. The RVA viscosity, swelling power and water holding capacity values reduced after all treatments. Oil in water emulsions were also analyzed by mixture of RS3 and emulsifier (casein or SPI). Viscosities of emulsions from RS casein were lower than those of RS-SPI. Emulsion capacity and emulsion stability values were better gotten using RS-SPI than RS-casein. The highest of emulsion capacity was obtained 11.33%. For storage period, the lowest peroxide and anisidine values of mixture RS-emulsifier were resulted from 5% emulsifier + 5% RS + 5% fish oil.


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 94
Author(s):  
Ming-Hsuan Chen ◽  
Karen Bett-Garber ◽  
Jeanne Lea ◽  
Anna McClung ◽  
Christine Bergman

Human diets containing greater resistant starch (RS) are associated with superior glycemic control. Although high amylose rice has higher RS (29 g/kg to 44 g/kg) than lower amylose content varieties, sensory and processing properties associated with RS have not been evaluated. This study used variants of Waxy and starch synthase II a (SSIIa) genes to divide high amylose (256 g/kg to 284 g/kg) varieties into three haplotypes to examine their effects on RS, RVA parameters, and 14 cooked rice texture properties. RVA characteristics were influenced by both genes with peak and hotpaste viscosity differentiating the three haplotypes. Setback from hotpaste viscosity was the only RVA parameter correlated with RS content across three haplotypes (r = −0.76 to −0.93). Cooked rice texture attributes were impacted more by Waxy than by SSIIa with initial starch coating, roughness, and intact particles differentiating the three haplotypes. Pairwise correlation (r = 0.46) and PCA analyses suggested that roughness was the only texture attribute associated with RS content; while protein content influenced roughness (r = 0.49) and stickiness between grains (r = 0.45). In conclusion, variation exists among genetic haplotypes with high RS for sensory traits that will appeal to diverse consumers across the globe with limited concern for negatively affecting grain processing quality.


2020 ◽  
Author(s):  
Satoko Miura ◽  
Nana Koyama ◽  
Naoko Crofts ◽  
Yuko Hosaka ◽  
Misato Abe ◽  
...  

Abstract Background Cereals high in resistant starch (RS) are gaining popularity, as their intake is thought to help manage diabetes and prediabetes. Number of patients suffering from diabetes is also increasing in Asian countries where people consume rice as a staple food, hence generation of practically growable high RS rice line has been anticipated. It is known that suppression of starch branching enzyme (BE) IIb increases RS content in cereals. To further increase RS content and for more practical use, we generated a non-transgenic be1 be2b double mutant rice (Oryza sativa) line, which completely lacked both proteins, by crossing a be1 mutant with a be2b mutant. Results The be1 be2b mutant showed a decrease in intermediate amylopectin chains and an increase in long amylopectin chains compared with be2b. The amylose content of be1 be2b mutant (51.7%) was the highest among all pre-existing non-transgenic rice lines. To understand the effects of chewing steamed rice and cooking rice flour on RS content, RS content of mashed and un-mashed steamed rice as well as raw and gelatinized rice flour were measured using be1 be2b and its parent mutant lines. The RS contents of mashed steamed rice and raw rice flour of be1 be2b mutant (28.4% and 35.1%, respectively) were 3-fold higher than those of be2b mutant. Gel-filtration analyses of starch treated with digestive enzymes showed that the RS in be1 be2b mutant was composed of the degradation products of amylose and long amylopectin chains. Seed weight of be1 be2b mutant was approximately 60% of the wild type and rather heavier than that of be2b mutant. Conclusions The endosperm starch in be1 be2b double mutant rice were enriched with long amylopectin chains. This led to a great increase in RS content in steamed rice grains and rice flour in be1 be2b compared with be2b single mutant. be1 be2b generated in this study must serve as a good material for an ultra-high RS rice cultivar.


2021 ◽  
Author(s):  
Adam Schoen ◽  
Anupama Joshi ◽  
Vijay K Tiwari ◽  
Bikram S. Gill ◽  
Nidhi Rawat

Abstract Background: Lack of nutritionally appropriate foods is one of the leading causes of obesity in the US and worldwide. Wheat (Triticum aestivum) provides 20% of the calories consumed daily across the globe. The nutrients in the wheat grain come primarily from the starch composed of amylose and amylopectin. Resistant starch content, which is known to have significant human health benefits, can be increased by modifying starch synthesis pathways. Starch synthase enzyme SSIIa, also known as starch granule protein isoform-1 (SGP-1), is integral to the biosynthesis of the branched and readily digestible glucose polymer amylopectin. The goal of this work was to develop a triple null mutant genotype for SSIIa locus in the elite hard red winter wheat variety ‘Jagger’ and evaluate the effect of the knock-out mutations on resistant starch content in grains with respect to wild type. Results: Knock-out mutations in SSIIa in the three genomes of wheat variety ‘Jagger’ were identified using TILLING. Subsequently, these loss-of function mutations on A, B, and D genomes were combined by crossing to generate a triple knockout mutant genotype Jag-ssiia-∆ABD. The Jag-ssiia-∆ABD had an amylose content of 35.70% compared to 31.15% in Jagger, leading to ~118% increase in resistant starch in the Jag-ssiia-∆ABD genotype of Jagger wheat. The single individual genome mutations also had various effects on starch composition. Conclusions: Our full null Jag-ssiia-∆ABD mutant showed a significant increase in RS without the shriveled grain phenotype seen in other ssiia knockouts in elite wheat cultivars. Moreover, this study shows the potential for developing nutritionally improved foods in a non-GM approach. Since all the mutants have been developed in an elite wheat cultivar, their adoption in production and supply will be feasible in future.


2009 ◽  
Vol 27 (Special Issue 1) ◽  
pp. S120-S124 ◽  
Author(s):  
R. Dostálová ◽  
J. Horáček ◽  
I. Hasalová ◽  
R. Trojan

Total starch (TS), amylose and resistant starch (RS) were determined in the sets of smooth pea and wrinkled pea varieties in the years 2006–2008. Starch content of smooth peas varied in the range 53.61–57.23%. Average amylose content was 27.8%. Resistant starch content varied from 2.07% to 6.31%. Content of starch at wrinkled pea varied from 26.57% to 32.55%. Average amylose content was 76.82% of total starch. Content of total starch increases continually during seed development. The dependence of total starch on determined dry mass in harvested sample can be defined by equation &gamma; = 1.2427 × –6.5611, by determination coefficient <I>R</I><sup>2</sup> = 0.8936 and highly significant correlation coefficient <I>r</I> = 0.945. Total starch content in dry seed reached final average value 29.56%. In garden pea, the level of maturity (by tenderometric measurement) and dry matter were determined. Resistant starch content of 11 garden pea cultivars was studied in three different terms of technological harvest.


Sign in / Sign up

Export Citation Format

Share Document