Numerical study of structural behavior of fiber-reinforced polymer-strengthened reinforced concrete beams with bond-slip effect under cyclic loading

2018 ◽  
Vol 20 (1) ◽  
pp. 97-107
Author(s):  
Prabin Pathak ◽  
Y. X. Zhang
2016 ◽  
Vol 707 ◽  
pp. 51-59 ◽  
Author(s):  
Osama Ahmed Mohamed ◽  
Rania Khattab

The behaviour of reinforced concrete beam strengthened with Carbon Fiber Reinforced Polymer (CFRP) and Glass fiber reinforced polymer GFRP laminates was investigated using finite element models and the results are presented in this paper. The numerical investigation assessed the effect of the configuration of FRP strengthening laminates on the behaviour of concrete beams. The load-deflection behaviour, and ultimate load of strengthened beam were compared to those of un-strengthened concrete beams. It was shown that using U-shaped FRP sheets increased the ultimate load. The stiffness of the strengthed beam also increased after first yielding of steel reinforcing bars. At was also observed that strengthening beams with FRP laminates to one-fourth of the beam span, modifies the failure of the beam from shear-controlled near the end of the unstrengthened beam, to flexure-controlled near mid-span. CFRP produced better results compared GFRP in terms of the ability to enhance the behavior of strengthenened reinforced concrete beams.


2019 ◽  
Vol 23 (7) ◽  
pp. 1290-1304
Author(s):  
Yang Yang ◽  
Ze-Yang Sun ◽  
Gang Wu ◽  
Da-Fu Cao ◽  
Zhi-Qin Zhang

This study presents a design method for hybrid fiber-reinforced-polymer-steel-reinforced concrete beams by an optimized analysis of the cross section. First, the relationships among the energy consumption, the bearing capacity, and the reinforcement ratio are analyzed; then, the parameters of the cross section are determined. Comparisons between the available theoretical and experimental results show that the designed hybrid fiber-reinforced-polymer-steel-reinforced concrete beams with a low area ratio between the fiber-reinforced polymer and the steel reinforcement could meet the required carrying capacity and exhibited high ductility.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 234 ◽  
Author(s):  
Yingwu Zhou ◽  
Yaowei Zheng ◽  
Lili Sui ◽  
Biao Hu ◽  
Xiaoxu Huang

Steel corrosion is considered as the main factor for the insufficient durability of concrete structures, especially in the marine environment. In this paper, to further inhibit steel corrosion in a high chloride environment and take advantage of the dual-functional carbon fiber reinforced polymer (CFRP), the impressed current cathodic protection (ICCP) technique was applied to the hybrid-reinforced concrete beam with internally embedded CFRP bars and steel fiber reinforced polymer composite bar (SFCB) as the anode material while the steel bar was compelled to the cathode. The effect of the new ICCP system on the flexural performance of the hybrid-reinforced concrete beam subjected to corrosion was verified experimentally. First, the electricity-accelerated precorrosion test was performed for the steel bar in the hybrid-reinforced beams with a target corrosion ratio of 5%. Then, the dry–wet cycles corrosion was conducted and the ICCP system was activated simultaneously for the hybrid-reinforced concrete beam for 180 days. Finally, the three-point bending experiment was carried out for the hybrid-reinforced concrete beams. The steel bars were taken out from the concrete to quantitatively measure the corrosion ratio after flexural tests. Results showed that the further corrosion of steel bars could be inhibited effectively by the ICCP treatment with the CFRP bar and the SFCB as the anode. Additionally, the ICCP system showed an obvious effect on the flexural behavior of the hybrid-reinforced concrete beams: The crack load and ultimate load, as well as the stiffness, were enhanced notably compared with the beam without ICCP treatment. Compared with the SFCB anode, the ICCP system with the CFRP bar as the anode material was more effective for the hybrid-reinforced concrete beam to prevent the steel corrosion.


Sign in / Sign up

Export Citation Format

Share Document