Simplified calculation of effective flange width for shear walls with flange

2015 ◽  
Vol 25 (12) ◽  
pp. 558-577 ◽  
Author(s):  
Qing-Xuan Shi ◽  
Bin Wang
2011 ◽  
Vol 243-249 ◽  
pp. 980-984
Author(s):  
Xue Yi Fu ◽  
Jia Xin Qu

Both reference [1~2] method and partitioned design method (GB 50010-2002) were adopted to design complex shear walls, and some factors such as axial compression ratio, reinforcing ratio, section dimension, concrete strength grade and effective flange width were considered, then their limited loading capacity would be compared with each other when axial force was considered as a fixed value. It was found that there were some defects of complex shear wall partitioned design method. And its applied conditions were suggested, which included section restricted condition and limited value of axial compression ratio. When these conditions couldn’t be satisfied, the adjusted reinforcement partitioned design method of reference [3] was suggested. If the uneconomical problem of partitioned design method could not be accepted, whole section design method of reference [1~2] would be suggested.


2015 ◽  
Vol 5 (1) ◽  
pp. 109-118
Author(s):  
F. S. Trifa ◽  
A. Cătărig

Abstract The paper presents a simplified calculation method to predict, as accurate as possible, the most important characteristics of the behaviour of the slender reinforced concrete shear walls in the inelastic range: failure mode, strength capacity, flexural and shear deformations, sectional and element ductility. The formulation is based on nonlinear beam element with taking into account the influence of shear, both on strength and stiffness of the wall. The principal parameters incorporated in the calculation model are: the rectangular shape of the cross section, the aspect ratio of the wall, the most accurate constitutive relationships for the compressed concrete and for the reinforcement steel, both in compression and in tension (including the strengthening of the steel after yielding), the variation of the Poisson ratio of the concrete, the amount and distribution of the vertical reinforcement. The model uses the concept of distributed (smeared) plasticity along the element and so the flexural deformations are computed by integrating the actual curvatures on the height of the wall. The shear deformations are also calculated, in agreement with the results of some recent experimental researches. The calculation method was then applied to two experimental wall specimens and their force – horizontal top displacement curves were plotted.


Author(s):  
Nan Lu ◽  
Weibin Li

This study was organized to derive simplified expressions to estimate the effective flange width for T-shaped shear walls at different loading stages. For that purpose, the variation in the effective flange width was explored by introducing dimensionless effective flange width coefficient. According to the principle of minimum potential energy, the theoretical expression of the effective flange width coefficient in the elastic stage was obtained. Furthermore, a parametric study considering the axial load ratio, height-width ratio of flange and width-thickness ratio of the flange, as well as the section aspect ratio was conducted to determine the effective flange width using verified nonlinear finite-element models. In light of the parametric analysis results, a formula model was proposed depending on the axial load ratio and height-width ratio of flange. Finally, the predictions of the proposed simplified formulas were verified with the theoretical solutions or finite element (FE) results, which indicated that the proposed formulas can accurately capture the effective flange width at the elastic, yield and limit state.


2012 ◽  
Vol 132 (2) ◽  
pp. 197-206 ◽  
Author(s):  
Yoshiki Nakachi ◽  
Takayuki Fukae ◽  
Toshinori Sugahara ◽  
Hayato Nakamura ◽  
Mitsuaki Koyama ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
pp. 37-44
Author(s):  
El Mehdi Echebba ◽  
Hasnae Boubel ◽  
Oumnia Elmrabet ◽  
Mohamed Rougui

Abstract In this paper, an evaluation was tried for the impact of structural design on structural response. Several situations are foreseen as the possibilities of changing the distribution of the structural elements (sails, columns, etc.), the width of the structure and the number of floors indicates the adapted type of bracing for a given structure by referring only to its Geometric dimensions. This was done by studying the effect of the technical design of the building on the natural frequency of the structure with the study of the influence of the distribution of the structural elements on the seismic response of the building, taking into account of the requirements of the Moroccan earthquake regulations 2000/2011 and using the ANSYS APDL and Robot Structural Analysis software.


2001 ◽  
Vol 85 (6) ◽  
pp. 43-48
Author(s):  
Peter Dobrila ◽  
Miroslav Premrov

2019 ◽  
Author(s):  
Hossein Alimohammadi ◽  
Mostafa Dalvi Esfahani ◽  
Mohammadali Lotfollahi Yaghin

In this study, the seismic behavior of the concrete shear wall considering the opening with different shapes and constant cross-section has been studied, and for this purpose, several shear walls are placed under the increasingly non-linear static analysis (Pushover). These case studies modeled in 3D Abaqus Software, and the results of the ductility coefficient, hardness, energy absorption, added resistance, the final shape, and the final resistance are compared to shear walls without opening.


2016 ◽  
Vol 54 (4) ◽  
pp. 381-386
Author(s):  
T. Kishimoto ◽  
H. Furuta ◽  
K. Hattori ◽  
M. Kono

Sign in / Sign up

Export Citation Format

Share Document