scholarly journals Thermal stability of filler‐based ethylene/vinyl acetate/vinyl alcohol terpolymer in nitroplasticizer oxidative environment

Author(s):  
Dali Yang ◽  
Kevin C. Henderson ◽  
Robin M. Pacheco ◽  
Kevin M. Hubbard ◽  
David J. Devlin
2015 ◽  
Vol 74 (10) ◽  
Author(s):  
Supri A. G. ◽  
A. R. H. Fatimah ◽  
Z. Firuz

Taro powder (TP) filled composites based on recycled high density polyethylene (RHDPE)/ ethylene vinyl acetate (EVA) were prepared via melt blending method. Polyethylene-grafted-maleic anhydride (PE-g-MAH) was used as a compatibilizer to enhance interfacial bonding of RHDPE/EVA/TP composites. The effects of TP loading and the addition of PE-g-MAH on the tensile properties and thermal stability of RHDPE/EVA/TP composites were investigated and studied. Findings indicated that increased TP loading will reduce tensile strength and elongation at break while increasing the modulus of elasticity. The thermal stability of RHDPE/EVA/TP composites improved by increasing filler loading. With respect to both tensile properties and thermal stability, RHDPE/EVA/TP composites with PE-g-MAH performed better than the composites without the addition of compatibilizers. 


2016 ◽  
Vol 852 ◽  
pp. 657-662
Author(s):  
Xiao Li Yang ◽  
Huai Qing Wang ◽  
Le Lv ◽  
Sheng Lei Yuan ◽  
Jian Cai ◽  
...  

The blends of ethylene vinyl acetate (EVA) and thermoplastic polyurethane (TPU) were prepared by means of blending. The mechanical properties of EVA/TPU blends and thermal stability of the extrudates were investigated. The results show that the toughness of EVA/TPU has been improved after adding TPU into EVA, and doesn’t affect the thermal stability of material.


2021 ◽  
Author(s):  
DAVID Zuluaga-Parra ◽  
L.F Ramos-deValle ◽  
Saul Sanchez ◽  
J.R. Torres-Lubián ◽  
J.A. Rodríguez-Gonzalez ◽  
...  

Abstract The cellulose and starch present in the avocado seed can be chemically modified to obtain biofillers with fire retarding characteristics. The resulting composites could be used as substitute of the corresponding halogenated composites. For this, the avocado seed was first washed, dehydrated and pulverized, and thereafter, chemically modified with phosphoric acid in the presence of urea. This was studied using infrared spectroscopy, nuclear magnetic resonance and X-Ray photoelectron spectroscopy, in order to determine the resulting chemical structure and confirm the presence of the proposed functional groups. In addition, scanning electron microscopy and elemental analysis were used, respectively, to establish the resulting morphological changes, as well as the elements present on the surface of the modified material. Thermogravimetric analysis was also carried out in order to establish the thermal stability of the material and predict the effect on the flame retardancy due to the mentioned chemical modification. Further tests established that the obtained modified structure and morphology of the avocado seed was highly dependent on the method used to dehydrate the pulverized avocado seed. It was also determined that chemical modification greatly increased the thermal stability of the avocado seed in air atmosphere. The flame-retardant effect of the modified avocado seed was assessed in polyethylene/ethylene-vinyl-acetate (PE/EVA) composites via cone calorimeter tests. These results showed that the modified avocado seed decreased the peak of the heat release rate (pHRR) by 50% and the total heat released (THR) by 15%. This phosphated avocado seed could be a good option as a renewable biofiller for polymer composites with enhanced flame-retardant properties.


Sign in / Sign up

Export Citation Format

Share Document