scholarly journals Explainable artificial intelligence and machine learning: A reality rooted perspective

Author(s):  
Frank Emmert‐Streib ◽  
Olli Yli‐Harja ◽  
Matthias Dehmer
2021 ◽  
Author(s):  
J. Eric T. Taylor ◽  
Graham Taylor

Artificial intelligence powered by deep neural networks has reached a levelof complexity where it can be difficult or impossible to express how a modelmakes its decisions. This black-box problem is especially concerning when themodel makes decisions with consequences for human well-being. In response,an emerging field called explainable artificial intelligence (XAI) aims to increasethe interpretability, fairness, and transparency of machine learning. In thispaper, we describe how cognitive psychologists can make contributions to XAI.The human mind is also a black box, and cognitive psychologists have overone hundred and fifty years of experience modeling it through experimentation.We ought to translate the methods and rigour of cognitive psychology to thestudy of artificial black boxes in the service of explainability. We provide areview of XAI for psychologists, arguing that current methods possess a blindspot that can be complemented by the experimental cognitive tradition. Wealso provide a framework for research in XAI, highlight exemplary cases ofexperimentation within XAI inspired by psychological science, and provide atutorial on experimenting with machines. We end by noting the advantages ofan experimental approach and invite other psychologists to conduct research inthis exciting new field.


10.29007/4b7h ◽  
2018 ◽  
Author(s):  
Maria Paola Bonacina

Reasoning and learning have been considered fundamental features of intelligence ever since the dawn of the field of artificial intelligence, leading to the development of the research areas of automated reasoning and machine learning. This short paper is a non-technical position statement that aims at prompting a discussion of the relationship between automated reasoning and machine learning, and more generally between automated reasoning and artificial intelligence. We suggest that the emergence of the new paradigm of XAI, that stands for eXplainable Artificial Intelligence, is an opportunity for rethinking these relationships, and that XAI may offer a grand challenge for future research on automated reasoning.


2021 ◽  
Vol 4 ◽  
Author(s):  
Lindsay Wells ◽  
Tomasz Bednarz

Research into Explainable Artificial Intelligence (XAI) has been increasing in recent years as a response to the need for increased transparency and trust in AI. This is particularly important as AI is used in sensitive domains with societal, ethical, and safety implications. Work in XAI has primarily focused on Machine Learning (ML) for classification, decision, or action, with detailed systematic reviews already undertaken. This review looks to explore current approaches and limitations for XAI in the area of Reinforcement Learning (RL). From 520 search results, 25 studies (including 5 snowball sampled) are reviewed, highlighting visualization, query-based explanations, policy summarization, human-in-the-loop collaboration, and verification as trends in this area. Limitations in the studies are presented, particularly a lack of user studies, and the prevalence of toy-examples and difficulties providing understandable explanations. Areas for future study are identified, including immersive visualization, and symbolic representation.


2021 ◽  
Vol 5 (4) ◽  
pp. 55
Author(s):  
Anastasiia Kolevatova ◽  
Michael A. Riegler ◽  
Francesco Cherubini ◽  
Xiangping Hu ◽  
Hugo L. Hammer

A general issue in climate science is the handling of big data and running complex and computationally heavy simulations. In this paper, we explore the potential of using machine learning (ML) to spare computational time and optimize data usage. The paper analyzes the effects of changes in land cover (LC), such as deforestation or urbanization, on local climate. Along with green house gas emission, LC changes are known to be important causes of climate change. ML methods were trained to learn the relation between LC changes and temperature changes. The results showed that random forest (RF) outperformed other ML methods, and especially linear regression models representing current practice in the literature. Explainable artificial intelligence (XAI) was further used to interpret the RF method and analyze the impact of different LC changes on temperature. The results mainly agree with the climate science literature, but also reveal new and interesting findings, demonstrating that ML methods in combination with XAI can be useful in analyzing the climate effects of LC changes. All parts of the analysis pipeline are explained including data pre-processing, feature extraction, ML training, performance evaluation, and XAI.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zia U. Ahmed ◽  
Kang Sun ◽  
Michael Shelly ◽  
Lina Mu

AbstractMachine learning (ML) has demonstrated promise in predicting mortality; however, understanding spatial variation in risk factor contributions to mortality rate requires explainability. We applied explainable artificial intelligence (XAI) on a stack-ensemble machine learning model framework to explore and visualize the spatial distribution of the contributions of known risk factors to lung and bronchus cancer (LBC) mortality rates in the conterminous United States. We used five base-learners—generalized linear model (GLM), random forest (RF), Gradient boosting machine (GBM), extreme Gradient boosting machine (XGBoost), and Deep Neural Network (DNN) for developing stack-ensemble models. Then we applied several model-agnostic approaches to interpret and visualize the stack ensemble model's output in global and local scales (at the county level). The stack ensemble generally performs better than all the base learners and three spatial regression models. A permutation-based feature importance technique ranked smoking prevalence as the most important predictor, followed by poverty and elevation. However, the impact of these risk factors on LBC mortality rates varies spatially. This is the first study to use ensemble machine learning with explainable algorithms to explore and visualize the spatial heterogeneity of the relationships between LBC mortality and risk factors in the contiguous USA.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Basim Mahbooba ◽  
Mohan Timilsina ◽  
Radhya Sahal ◽  
Martin Serrano

Despite the growing popularity of machine learning models in the cyber-security applications (e.g., an intrusion detection system (IDS)), most of these models are perceived as a black-box. The eXplainable Artificial Intelligence (XAI) has become increasingly important to interpret the machine learning models to enhance trust management by allowing human experts to understand the underlying data evidence and causal reasoning. According to IDS, the critical role of trust management is to understand the impact of the malicious data to detect any intrusion in the system. The previous studies focused more on the accuracy of the various classification algorithms for trust in IDS. They do not often provide insights into their behavior and reasoning provided by the sophisticated algorithm. Therefore, in this paper, we have addressed XAI concept to enhance trust management by exploring the decision tree model in the area of IDS. We use simple decision tree algorithms that can be easily read and even resemble a human approach to decision-making by splitting the choice into many small subchoices for IDS. We experimented with this approach by extracting rules in a widely used KDD benchmark dataset. We also compared the accuracy of the decision tree approach with the other state-of-the-art algorithms.


2020 ◽  
Author(s):  
Maria Moreno de Castro

<p>The presence of automated decision making continuously increases in today's society. Algorithms based in machine and deep learning decide how much we pay for insurance,  translate our thoughts to speech, and shape our consumption of goods (via e-marketing) and knowledge (via search engines). Machine and deep learning models are ubiquitous in science too, in particular, many promising examples are being developed to prove their feasibility for earth sciences applications, like finding temporal trends or spatial patterns in data or improving parameterization schemes for climate simulations. </p><p>However, most machine and deep learning applications aim to optimise performance metrics (for instance, accuracy, which stands for the times the model prediction was right), which are rarely good indicators of trust (i.e., why these predictions were right?). In fact, with the increase of data volume and model complexity, machine learning and deep learning  predictions can be very accurate but also prone to rely on spurious correlations, encode and magnify bias, and draw conclusions that do not incorporate the underlying dynamics governing the system. Because of that, the uncertainty of the predictions and our confidence in the model are difficult to estimate and the relation between inputs and outputs becomes hard to interpret. </p><p>Since it is challenging to shift a community from “black” to “glass” boxes, it is more useful to implement Explainable Artificial Intelligence (XAI) techniques right at the beginning of the machine learning and deep learning adoption rather than trying to fix fundamental problems later. The good news is that most of the popular XAI techniques basically are sensitivity analyses because they consist of a systematic perturbation of some model components in order to observe how it affects the model predictions. The techniques comprise random sampling, Monte-Carlo simulations, and ensemble runs, which are common methods in geosciences. Moreover, many XAI techniques are reusable because they are model-agnostic and must be applied after the model has been fitted. In addition, interpretability provides robust arguments when communicating machine and deep learning predictions to scientists and decision-makers.</p><p>In order to assist not only the practitioners but also the end-users in the evaluation of  machine and deep learning results, we will explain the intuition behind some popular techniques of XAI and aleatory and epistemic Uncertainty Quantification: (1) the Permutation Importance and Gaussian processes on the inputs (i.e., the perturbation of the model inputs), (2) the Monte-Carlo Dropout, Deep ensembles, Quantile Regression, and Gaussian processes on the weights (i.e, the perturbation of the model architecture), (3) the Conformal Predictors (useful to estimate the confidence interval on the outputs), and (4) the Layerwise Relevance Propagation (LRP), Shapley values, and Local Interpretable Model-Agnostic Explanations (LIME) (designed to visualize how each feature in the data affected a particular prediction). We will also introduce some best-practises, like the detection of anomalies in the training data before the training, the implementation of fallbacks when the prediction is not reliable, and physics-guided learning by including constraints in the loss function to avoid physical inconsistencies, like the violation of conservation laws. </p>


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3607 ◽  
Author(s):  
Miseon Han ◽  
Jeongtae Kim

We investigated machine learning-based joint banknote recognition and counterfeit detection method. Unlike existing methods, since the proposed method simultaneously recognize banknote type and detect counterfeit detection, it is significantly faster than existing serial banknote recognition and counterfeit detection methods. Furthermore, we propose an explainable artificial intelligence method for visualizing regions that contributed to the recognition and detection. Using the visualization, it is possible to understand the behavior of the trained machine learning system. In experiments using the United State Dollar and the European Union Euro banknotes, the proposed method shows significant improvement in computation time from conventional serial method.


2021 ◽  
Vol 36 ◽  
Author(s):  
Alexandros Vassiliades ◽  
Nick Bassiliades ◽  
Theodore Patkos

Abstract Argumentation and eXplainable Artificial Intelligence (XAI) are closely related, as in the recent years, Argumentation has been used for providing Explainability to AI. Argumentation can show step by step how an AI System reaches a decision; it can provide reasoning over uncertainty and can find solutions when conflicting information is faced. In this survey, we elaborate over the topics of Argumentation and XAI combined, by reviewing all the important methods and studies, as well as implementations that use Argumentation to provide Explainability in AI. More specifically, we show how Argumentation can enable Explainability for solving various types of problems in decision-making, justification of an opinion, and dialogues. Subsequently, we elaborate on how Argumentation can help in constructing explainable systems in various applications domains, such as in Medical Informatics, Law, the Semantic Web, Security, Robotics, and some general purpose systems. Finally, we present approaches that combine Machine Learning and Argumentation Theory, toward more interpretable predictive models.


Sign in / Sign up

Export Citation Format

Share Document