Uncertainty Quantification and Explainable Artificial Intelligence

Author(s):  
Maria Moreno de Castro

<p>The presence of automated decision making continuously increases in today's society. Algorithms based in machine and deep learning decide how much we pay for insurance,  translate our thoughts to speech, and shape our consumption of goods (via e-marketing) and knowledge (via search engines). Machine and deep learning models are ubiquitous in science too, in particular, many promising examples are being developed to prove their feasibility for earth sciences applications, like finding temporal trends or spatial patterns in data or improving parameterization schemes for climate simulations. </p><p>However, most machine and deep learning applications aim to optimise performance metrics (for instance, accuracy, which stands for the times the model prediction was right), which are rarely good indicators of trust (i.e., why these predictions were right?). In fact, with the increase of data volume and model complexity, machine learning and deep learning  predictions can be very accurate but also prone to rely on spurious correlations, encode and magnify bias, and draw conclusions that do not incorporate the underlying dynamics governing the system. Because of that, the uncertainty of the predictions and our confidence in the model are difficult to estimate and the relation between inputs and outputs becomes hard to interpret. </p><p>Since it is challenging to shift a community from “black” to “glass” boxes, it is more useful to implement Explainable Artificial Intelligence (XAI) techniques right at the beginning of the machine learning and deep learning adoption rather than trying to fix fundamental problems later. The good news is that most of the popular XAI techniques basically are sensitivity analyses because they consist of a systematic perturbation of some model components in order to observe how it affects the model predictions. The techniques comprise random sampling, Monte-Carlo simulations, and ensemble runs, which are common methods in geosciences. Moreover, many XAI techniques are reusable because they are model-agnostic and must be applied after the model has been fitted. In addition, interpretability provides robust arguments when communicating machine and deep learning predictions to scientists and decision-makers.</p><p>In order to assist not only the practitioners but also the end-users in the evaluation of  machine and deep learning results, we will explain the intuition behind some popular techniques of XAI and aleatory and epistemic Uncertainty Quantification: (1) the Permutation Importance and Gaussian processes on the inputs (i.e., the perturbation of the model inputs), (2) the Monte-Carlo Dropout, Deep ensembles, Quantile Regression, and Gaussian processes on the weights (i.e, the perturbation of the model architecture), (3) the Conformal Predictors (useful to estimate the confidence interval on the outputs), and (4) the Layerwise Relevance Propagation (LRP), Shapley values, and Local Interpretable Model-Agnostic Explanations (LIME) (designed to visualize how each feature in the data affected a particular prediction). We will also introduce some best-practises, like the detection of anomalies in the training data before the training, the implementation of fallbacks when the prediction is not reliable, and physics-guided learning by including constraints in the loss function to avoid physical inconsistencies, like the violation of conservation laws. </p>

Author(s):  
Samet Oztoprak ◽  
Zeynep Orman

Recent advances in deep learning methodology led to artificial intelligence (AI) performance achieving and even surpassing human levels in an increasing number of complex tasks. There are many impressive examples of this development such as image classification, sensitivity analysis, speech understanding, or strategic gaming. The estimations based on the AI methods do not give any certain information due to the lack of transparency for the visualization, explanation, and interpretation of deep learning models which can be a major disadvantage in many applications. This chapter discusses studies on the prediction of precious metals in the financial field that need an explanatory model. Traditional AI and machine learning methods are insufficient to realize these predictions. There are many advantages to using explainable artificial intelligence (XAI), which enables us to make reasonable decisions based on inferences. In this chapter, the authors examine the precious metal prediction by XAI by presenting a comprehensive literature review on the related studies.


2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


2020 ◽  
Vol 114 ◽  
pp. 242-245
Author(s):  
Jootaek Lee

The term, Artificial Intelligence (AI), has changed since it was first coined by John MacCarthy in 1956. AI, believed to have been created with Kurt Gödel's unprovable computational statements in 1931, is now called deep learning or machine learning. AI is defined as a computer machine with the ability to make predictions about the future and solve complex tasks, using algorithms. The AI algorithms are enhanced and become effective with big data capturing the present and the past while still necessarily reflecting human biases into models and equations. AI is also capable of making choices like humans, mirroring human reasoning. AI can help robots to efficiently repeat the same labor intensive procedures in factories and can analyze historic and present data efficiently through deep learning, natural language processing, and anomaly detection. Thus, AI covers a spectrum of augmented intelligence relating to prediction, autonomous intelligence relating to decision making, automated intelligence for labor robots, and assisted intelligence for data analysis.


2021 ◽  
Vol 54 (6) ◽  
pp. 1-35
Author(s):  
Ninareh Mehrabi ◽  
Fred Morstatter ◽  
Nripsuta Saxena ◽  
Kristina Lerman ◽  
Aram Galstyan

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 18
Author(s):  
Pantelis Linardatos ◽  
Vasilis Papastefanopoulos ◽  
Sotiris Kotsiantis

Recent advances in artificial intelligence (AI) have led to its widespread industrial adoption, with machine learning systems demonstrating superhuman performance in a significant number of tasks. However, this surge in performance, has often been achieved through increased model complexity, turning such systems into “black box” approaches and causing uncertainty regarding the way they operate and, ultimately, the way that they come to decisions. This ambiguity has made it problematic for machine learning systems to be adopted in sensitive yet critical domains, where their value could be immense, such as healthcare. As a result, scientific interest in the field of Explainable Artificial Intelligence (XAI), a field that is concerned with the development of new methods that explain and interpret machine learning models, has been tremendously reignited over recent years. This study focuses on machine learning interpretability methods; more specifically, a literature review and taxonomy of these methods are presented, as well as links to their programming implementations, in the hope that this survey would serve as a reference point for both theorists and practitioners.


2021 ◽  
Vol 10 (2) ◽  
pp. 205846012199029
Author(s):  
Rani Ahmad

Background The scope and productivity of artificial intelligence applications in health science and medicine, particularly in medical imaging, are rapidly progressing, with relatively recent developments in big data and deep learning and increasingly powerful computer algorithms. Accordingly, there are a number of opportunities and challenges for the radiological community. Purpose To provide review on the challenges and barriers experienced in diagnostic radiology on the basis of the key clinical applications of machine learning techniques. Material and Methods Studies published in 2010–2019 were selected that report on the efficacy of machine learning models. A single contingency table was selected for each study to report the highest accuracy of radiology professionals and machine learning algorithms, and a meta-analysis of studies was conducted based on contingency tables. Results The specificity for all the deep learning models ranged from 39% to 100%, whereas sensitivity ranged from 85% to 100%. The pooled sensitivity and specificity were 89% and 85% for the deep learning algorithms for detecting abnormalities compared to 75% and 91% for radiology experts, respectively. The pooled specificity and sensitivity for comparison between radiology professionals and deep learning algorithms were 91% and 81% for deep learning models and 85% and 73% for radiology professionals (p < 0.000), respectively. The pooled sensitivity detection was 82% for health-care professionals and 83% for deep learning algorithms (p < 0.005). Conclusion Radiomic information extracted through machine learning programs form images that may not be discernible through visual examination, thus may improve the prognostic and diagnostic value of data sets.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi139-vi139
Author(s):  
Jan Lost ◽  
Tej Verma ◽  
Niklas Tillmanns ◽  
W R Brim ◽  
Harry Subramanian ◽  
...  

Abstract PURPOSE Identifying molecular subtypes in gliomas has prognostic and therapeutic value, traditionally after invasive neurosurgical tumor resection or biopsy. Recent advances using artificial intelligence (AI) show promise in using pre-therapy imaging for predicting molecular subtype. We performed a systematic review of recent literature on AI methods used to predict molecular subtypes of gliomas. METHODS Literature review conforming to PRSIMA guidelines was performed for publications prior to February 2021 using 4 databases: Ovid Embase, Ovid MEDLINE, Cochrane trials (CENTRAL), and Web of Science core-collection. Keywords included: artificial intelligence, machine learning, deep learning, radiomics, magnetic resonance imaging, glioma, and glioblastoma. Non-machine learning and non-human studies were excluded. Screening was performed using Covidence software. Bias analysis was done using TRIPOD guidelines. RESULTS 11,727 abstracts were retrieved. After applying initial screening exclusion criteria, 1,135 full text reviews were performed, with 82 papers remaining for data extraction. 57% used retrospective single center hospital data, 31.6% used TCIA and BRATS, and 11.4% analyzed multicenter hospital data. An average of 146 patients (range 34-462 patients) were included. Algorithms predicting IDH status comprised 51.8% of studies, MGMT 18.1%, and 1p19q 6.0%. Machine learning methods were used in 71.4%, deep learning in 27.4%, and 1.2% directly compared both methods. The most common algorithm for machine learning were support vector machine (43.3%), and for deep learning convolutional neural network (68.4%). Mean prediction accuracy was 76.6%. CONCLUSION Machine learning is the predominant method for image-based prediction of glioma molecular subtypes. Major limitations include limited datasets (60.2% with under 150 patients) and thus limited generalizability of findings. We recommend using larger annotated datasets for AI network training and testing in order to create more robust AI algorithms, which will provide better prediction accuracy to real world clinical datasets and provide tools that can be translated to clinical practice.


2021 ◽  
Author(s):  
J. Eric T. Taylor ◽  
Graham Taylor

Artificial intelligence powered by deep neural networks has reached a levelof complexity where it can be difficult or impossible to express how a modelmakes its decisions. This black-box problem is especially concerning when themodel makes decisions with consequences for human well-being. In response,an emerging field called explainable artificial intelligence (XAI) aims to increasethe interpretability, fairness, and transparency of machine learning. In thispaper, we describe how cognitive psychologists can make contributions to XAI.The human mind is also a black box, and cognitive psychologists have overone hundred and fifty years of experience modeling it through experimentation.We ought to translate the methods and rigour of cognitive psychology to thestudy of artificial black boxes in the service of explainability. We provide areview of XAI for psychologists, arguing that current methods possess a blindspot that can be complemented by the experimental cognitive tradition. Wealso provide a framework for research in XAI, highlight exemplary cases ofexperimentation within XAI inspired by psychological science, and provide atutorial on experimenting with machines. We end by noting the advantages ofan experimental approach and invite other psychologists to conduct research inthis exciting new field.


Sign in / Sign up

Export Citation Format

Share Document