II. Yeast sequencing reports. A 12·5 kb fragment of the yeast chromosome II contains two adjacent genes encoding ribosomal proteins and six putative new genes, one of which encodes a putative transcriptional factor

Yeast ◽  
1994 ◽  
Vol 10 (11) ◽  
pp. 1511-1525 ◽  
Author(s):  
Nadine Démolis ◽  
Laurent Mallet ◽  
Michel Jacquet
1994 ◽  
Vol 26 (1) ◽  
pp. 1-7 ◽  
Author(s):  
F. Nasr ◽  
A. -M. B�cam ◽  
E. Grzybowska ◽  
M. Zagulski ◽  
P. P. Slonimski ◽  
...  

2018 ◽  
Author(s):  
Jacob C. Ulirsch ◽  
Jeffrey M. Verboon ◽  
Shideh Kazerounian ◽  
Michael H. Guo ◽  
Daniel Yuan ◽  
...  

ABSTRACTDiamond-Blackfan anemia (DBA) is a rare bone marrow failure disorder that affects 1 in 100,000 to 200,000 live births and has been associated with mutations in components of the ribosome. In order to characterize the genetic landscape of this genetically heterogeneous disorder, we recruited a cohort of 472 individuals with a clinical diagnosis of DBA and performed whole exome sequencing (WES). Overall, we identified rare and predicted damaging mutations in likely causal genes for 78% of individuals. The majority of mutations were singletons, absent from population databases, predicted to cause loss of function, and in one of 19 previously reported genes encoding for a diverse set of ribosomal proteins (RPs). Using WES exon coverage estimates, we were able to identify and validate 31 deletions in DBA associated genes. We also observed an enrichment for extended splice site mutations and validated the diverse effects of these mutations using RNA sequencing in patientderived cell lines. Leveraging the size of our cohort, we observed several robust genotype-phenotype associations with congenital abnormalities and treatment outcomes. In addition to comprehensively identifying mutations in known genes, we further identified rare mutations in 7 previously unreported RP genes that may cause DBA. We also identified several distinct disorders that appear to phenocopy DBA, including 9 individuals with biallelic CECR1 mutations that result in deficiency of ADA2. However, no new genes were identified at exome-wide significance, suggesting that there are no unidentified genes containing mutations readily identified by WES that explain > 5% of DBA cases. Overall, this comprehensive report should not only inform clinical practice for DBA patients, but also the design and analysis of future rare variant studies for heterogeneous Mendelian disorders.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Vikas D. Trivedi ◽  
Pramod Kumar Jangir ◽  
Rakesh Sharma ◽  
Prashant S. Phale

Abstract Carbaryl (1-naphthyl N-methylcarbamate) is a most widely used carbamate pesticide in the agriculture field. Soil isolate, Pseudomonas sp. strain C5pp mineralizes carbaryl via 1-naphthol, salicylate and gentisate, however the genetic organization and evolutionary events of acquisition and assembly of pathway have not yet been studied. The draft genome analysis of strain C5pp reveals that the carbaryl catabolic genes are organized into three putative operons, ‘upper’, ‘middle’ and ‘lower’. The sequence and functional analysis led to identification of new genes encoding: i) hitherto unidentified 1-naphthol 2-hydroxylase, sharing a common ancestry with 2,4-dichlorophenol monooxygenase; ii) carbaryl hydrolase, a member of a new family of esterase; and iii) 1,2-dihydroxy naphthalene dioxygenase, uncharacterized type-II extradiol dioxygenase. The ‘upper’ pathway genes were present as a part of a integron while the ‘middle’ and ‘lower’ pathway genes were present as two distinct class-I composite transposons. These findings suggest the role of horizontal gene transfer event(s) in the acquisition and evolution of the carbaryl degradation pathway in strain C5pp. The study presents an example of assembly of degradation pathway for carbaryl.


Hematology ◽  
2009 ◽  
Vol 2009 (1) ◽  
pp. 344-350 ◽  
Author(s):  
Christoph Klein

Abstract Congenital neutropenia comprises a variety of genetically heterogeneous phenotypic traits. Molecular elucidation of the underlying genetic defects has yielded important insights into the physiology of neutrophil differentiation and function. Non-syndromic variants of congenital neutropenia are caused by mutations in ELA2, HAX1, GFI1, or WAS. Syndromic variants of congenital neutropenia may be due to mutations in genes controlling glucose metabolism (SLC37A4, G6PC3) or lysosomal function (LYST, RAB27A, ROBLD3/p14, AP3B1, VPS13B). Furthermore, defects in genes encoding ribosomal proteins (SBDS, RMRP) and mitochondrial proteins (AK2, TAZ) are associated with congenital neutropenia syndromes. Despite remarkable progress in the field, many patients with congenital neutropenia cannot yet definitively be classified by genetic terms. This review addresses diagnostic and therapeutic aspects of congenital neutropenia and covers recent molecular and pathophysiological insights of selected congenital neutropenia syndromes.


Author(s):  
Fei Wang ◽  
Deyu Zhang ◽  
Dejiu Zhang ◽  
Peifeng Li ◽  
Yanyan Gao

Mitochondria are one of the most important organelles in cells. Mitochondria are semi-autonomous organelles with their own genetic system, and can independently replicate, transcribe, and translate mitochondrial DNA. Translation initiation, elongation, termination, and recycling of the ribosome are four stages in the process of mitochondrial protein translation. In this process, mitochondrial protein translation factors and translation activators, mitochondrial RNA, and other regulatory factors regulate mitochondrial protein translation. Mitochondrial protein translation abnormalities are associated with a variety of diseases, including cancer, cardiovascular diseases, and nervous system diseases. Mutation or deletion of various mitochondrial protein translation factors and translation activators leads to abnormal mitochondrial protein translation. Mitochondrial tRNAs and mitochondrial ribosomal proteins are essential players during translation and mutations in genes encoding them represent a large fraction of mitochondrial diseases. Moreover, there is crosstalk between mitochondrial protein translation and cytoplasmic translation, and the imbalance between mitochondrial protein translation and cytoplasmic translation can affect some physiological and pathological processes. This review summarizes the regulation of mitochondrial protein translation factors, mitochondrial ribosomal proteins, mitochondrial tRNAs, and mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) in the mitochondrial protein translation process and its relationship with diseases. The regulation of mitochondrial protein translation and cytoplasmic translation in multiple diseases is also summarized.


Yeast ◽  
1997 ◽  
Vol 13 (13) ◽  
pp. 1199-1210 ◽  
Author(s):  
Sebastian Delbrück ◽  
Anja Sonneborn ◽  
Michaela Gerads ◽  
Alexander H. Grablowitz ◽  
Joachim F. Ernst

Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1966 ◽  
Author(s):  
Helena Xicoy ◽  
Jos F. Brouwers ◽  
Bé Wieringa ◽  
Gerard J. M. Martens

Parkinson’s disease (PD) is characterized by the loss of dopaminergic neurons from the substantia nigra (SN) that project to the dorsal striatum (caudate-putamen). To better understand the molecular mechanisms underlying PD, we performed combined lipid profiling and RNA sequencing of SN and putamen samples from PD patients and age-matched controls. SN lipid analysis pointed to a neuroinflammatory component and included elevated levels of the endosomal lipid Bis (Monoacylglycero)Phosphate 42:8, while two of the three depleted putamen lipids were saturated sphingomyelin species. Remarkably, we observed gender-related differences in the SN and putamen lipid profiles. Transcriptome analysis revealed that the top-enriched pathways among the 354 differentially expressed genes (DEGs) in the SN were “protein folding” and “neurotransmitter transport”, and among the 261 DEGs from putamen “synapse organization”. Furthermore, we identified pathways, e.g., “glutamate signaling”, and genes, encoding, e.g., an angiotensin receptor subtype or a proprotein convertase, that have not been previously linked to PD. The identification of 33 genes that were common among the SN and putamen DEGs, which included the α-synuclein paralog β-synuclein, may contribute to the understanding of general PD mechanisms. Thus, our proof-of-concept data highlights new genes, pathways and lipids that have not been explored before in the context of PD.


2020 ◽  
Vol 21 (3) ◽  
pp. 1128 ◽  
Author(s):  
Davide Angeli ◽  
Samanta Salvi ◽  
Gianluca Tedaldi

Breast and ovarian cancers are some of the most common tumors in females, and the genetic predisposition is emerging as one of the key risk factors in the development of these two malignancies. BRCA1 and BRCA2 are the best-known genes associated with hereditary breast and ovarian cancer. However, recent advances in molecular techniques, Next-Generation Sequencing in particular, have led to the identification of many new genes involved in the predisposition to breast and/or ovarian cancer, with different penetrance estimates. TP53, PTEN, STK11, and CDH1 have been identified as high penetrance genes for the risk of breast/ovarian cancers. Besides them, PALB2, BRIP1, ATM, CHEK2, BARD1, NBN, NF1, RAD51C, RAD51D and mismatch repair genes have been recognized as moderate and low penetrance genes, along with other genes encoding proteins involved in the same pathways, possibly associated with breast/ovarian cancer risk. In this review, we summarize the past and more recent findings in the field of cancer predisposition genes, with insights into the role of the encoded proteins and the associated genetic disorders. Furthermore, we discuss the possible clinical utility of genetic testing in terms of prevention protocols and therapeutic approaches.


Sign in / Sign up

Export Citation Format

Share Document