scholarly journals Laticifer Differentiation in Hevea brasiliensis: Induction by Exogenous Jasmonic Acid and Linolenic Acid

2000 ◽  
Vol 85 (1) ◽  
pp. 37-43 ◽  
Author(s):  
B HAO
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Swee Cheng Loh ◽  
Ahmad Sofiman Othman ◽  
G. Veera Singham

Abstract Hevea brasiliensis remains the primary crop commercially exploited to obtain latex, which is produced from the articulated secondary laticifer. Here, we described the transcriptional events related to jasmonic acid (JA)- and linolenic acid (LA)-induced secondary laticifer differentiation (SLD) in H. brasiliensis clone RRIM 600 based on RNA-seq approach. Histochemical approach proved that JA- and LA-treated samples resulted in SLD in H. brasiliensis when compared to ethephon and untreated control. RNA-seq data resulted in 86,614 unigenes, of which 2,664 genes were differentially expressed in JA and LA-induced secondary laticifer harvested from H. brasiliensis bark samples. Among these, 450 genes were unique to JA and LA as they were not differentially expressed in ethephon-treated samples compared with the untreated samples. Most transcription factors from the JA- and LA-specific dataset were classified under MYB, APETALA2/ethylene response factor (AP2/ERF), and basic-helix-loop-helix (bHLH) gene families that were involved in tissue developmental pathways, and we proposed that Bel5-GA2 oxidase 1-KNOTTED-like homeobox complex are likely involved in JA- and LA-induced SLD in H. brasiliensis. We also discovered alternative spliced transcripts, putative novel transcripts, and cis-natural antisense transcript pairs related to SLD event. This study has advanced understanding on the transcriptional regulatory network of SLD in H. brasiliensis.


2019 ◽  
Vol 20 (21) ◽  
pp. 5359 ◽  
Author(s):  
Lavanya Dampanaboina ◽  
Yinping Jiao ◽  
Junping Chen ◽  
Nicholas Gladman ◽  
Ratan Chopra ◽  
...  

Grain number per panicle is an important component of grain yield in sorghum (Sorghum bicolor (L.)) and other cereal crops. Previously, we reported that mutations in multi-seeded 1 (MSD1) and MSD2 genes result in a two-fold increase in grain number per panicle due to the restoration of the fertility of the pedicellate spikelets, which invariably abort in natural sorghum accessions. Here, we report the identification of another gene, MSD3, which is also involved in the regulation of grain numbers in sorghum. Four bulked F2 populations from crosses between BTx623 and each of the independent msd mutants p6, p14, p21, and p24 were sequenced to 20× coverage of the whole genome on a HiSeq 2000 system. Bioinformatic analyses of the sequence data showed that one gene, Sorbi_3001G407600, harbored homozygous mutations in all four populations. This gene encodes a plastidial ω-3 fatty acid desaturase that catalyzes the conversion of linoleic acid (18:2) to linolenic acid (18:3), a substrate for jasmonic acid (JA) biosynthesis. The msd3 mutants had reduced levels of linolenic acid in both leaves and developing panicles that in turn decreased the levels of JA. Furthermore, the msd3 panicle phenotype was reversed by treatment with methyl-JA (MeJA). Our characterization of MSD1, MSD2, and now MSD3 demonstrates that JA-regulated processes are critical to the msd phenotype. The identification of the MSD3 gene reveals a new target that could be manipulated to increase grain number per panicle in sorghum, and potentially other cereal crops, through the genomic editing of MSD3 functional orthologs.


Author(s):  
S.H. Mohd-Setapar ◽  
Lee Nian-Yian ◽  
N.S. Mohd-Sharif

Soxhlet extraction which is also known as solvent extraction refers to the preferential dissolution of oil by contacting oilseeds with a liquid solvent. This is the most efficient method to recover oil from oilseeds, thus solvent extraction using hexane has been commercialized as a standard practice in today’s industry. In this study, soxhlet extraction had been used to extract the rubber seed oil which contains high percentage of alpha-linolenic acid. In addition, the different solvents will be used for the extraction of rubber seed oil such as petroleum ether, n-hexane, ethanol and water to study the best solvent to extract the rubber seed oil so the maximum oil yield can be obtained. On the other hands, the natural resource, rubber belongs to the family of Euphorbiaceae, the genus is Hevea while the species of rubber is brasiliensis. Rubber (Hevea brasiliensis) seeds are abundant and wasted because they had not been used in any industry or applications in daily life. The oil of rubber seeds had been found that contained a significant percentage of long chain polyunsaturated fatty acids especially alpha-linolenic acid (ALA). Alpha-linolenic acid is one of the important elements of omega-3 fatty acids which play important roles in human metabolism, not only playing structural roles in phospholipid bilayers but also acting as precursors to bioactive molecules. Moreover, rubber seed oil also contains a high percentage of oleic acid and linoleic acid, these all are valuable compounds. Thus, rubber seed oil can be regarded as a plant derived oleic-linolenic acid. Rubber seeds can be considered as good sources for human food, animal feed and biofuel with its high content of fat, protein, amino acids and fatty acids. Therefore, it is important to study the method of extraction to extract the valuable components from rubber seeds, purify the extracted seed oil, so that the rubber seeds oil can be utilized into difference industries pharmaceutical, food, oleochemical and cosmetics.


2021 ◽  
Author(s):  
Yutao Zhu ◽  
Xiaoqian Hu ◽  
Yujiao Jia ◽  
Linying Gao ◽  
Yakun Pei ◽  
...  

Abstract Patatin-like proteins (PLPs) have nonspecific lipid acyl hydrolyze (LAH) activity, which can hydrolyze membrane lipids into fatty acids and lysophospholipids. The vital role of PLPs in plant growth and abiotic stress has been well elucidated. However, the function of PLPs in plant defense response against pathogens is still poorly understood. Here, we isolated and identified a novel cotton (Gossypium hirsutum) patatin-like protein gene GhPLP2. GhPLP2 expression was induced upon treatment with pathogens Verticillium dahliae, Fusarium xysporum, and signaling molecules jasmonic acid (JA), ethylene in cotton plants. Subcellular localization revealed that GhPLP2 was localized in the cell wall and plasma membrane. GhPLP2-silenced cotton plants showed reduced resistance to V. dahliae infection, while overexpression of GhPLP2 in Arabidopsis enhanced the resistance to V. dahliae, with mild symptoms, decreased disease index, and fungal biomass. Hypersensitive response, callose deposition, and H2O2 accumulation triggered by V. dahlia elicitor were reduced in silenced cotton plants. GhPLP2-transgenic Arabidopsis had more accumulation of JA and JA synthesis precursor linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) than control plants. Consistently, linoleic acid, α-linolenic acid, and jasmonic acid have decreased in GhPLP2-silenced cotton plants. Further, the gene expression of the JA signaling pathway is up-regulated in transgenic Arabidopsis and down-regulated in silenced cotton plants, respectively. These results showed that GhPLP2 is involved in plants' resistance to V. dahliae by maintaining fatty acid metabolism pools for JA biosynthesis and activation of the JA signaling pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yutao Zhu ◽  
Xiaoqian Hu ◽  
Ping Wang ◽  
Linying Gao ◽  
Yakun Pei ◽  
...  

Patatin-like proteins (PLPs) have non-specific lipid acyl hydrolysis (LAH) activity, which can hydrolyze membrane lipids into fatty acids and lysophospholipids. The vital role of PLPs in plant growth and abiotic stress has been well documented. However, the function of PLPs in plant defense responses against pathogens is still poorly understood. Here, we isolated and identified a novel cotton (Gossypium hirsutum) PLP gene GhPLP2. The expression of GhPLP2 was induced upon treatment with Verticillium dahliae, the signaling molecules jasmonic acid (JA) and ethylene (ETH) in cotton plants. Subcellular localization revealed that GhPLP2 was localized to the plasma membrane. GhPLP2-silenced cotton plants were more susceptible to infection by V. dahliae, while the overexpression of GhPLP2 in Arabidopsis enhanced its resistance to V. dahliae, which was apparent as mild symptoms, and a decrease in the disease index and fungal biomass. The hypersensitive response, deposition of callose, and H2O2 accumulation triggered by V. dahliae elicitor were reduced in GhPLP2-silenced cotton plants. The overexpression of GhPLP2 in Arabidopsis resulted in the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and facilitated the biosynthesis of JA and JA-mediated defensive responses. GhPLP2 silencing in cotton plants consistently reduced the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and suppressed the biosynthesis of JA and the defensive responses mediated by JA. These results indicate that GhPLP2 is involved in the resistance of cotton to V. dahliae by maintaining fatty acid metabolism pools for JA biosynthesis and activating the JA signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document