Down-regulation of Fas-Associated Phosphatase-1 (FAP-1) in Interleukin-2-Activated T Cells

1998 ◽  
Vol 186 (2) ◽  
pp. 103-110 ◽  
Author(s):  
Yan-Wen Zhou ◽  
Yoshihiro Komada ◽  
Hiroto Inaba ◽  
Eiichi Azuma ◽  
Minoru Sakurai
2000 ◽  
Vol 20 (2) ◽  
pp. 702-712 ◽  
Author(s):  
Chi-Wing Chow ◽  
Roger J. Davis

ABSTRACT Calcium-stimulated nuclear factor of activated T cells (NFAT) transcription activity at the interleukin-2 promoter is negatively regulated by cyclic AMP (cAMP). This effect of cAMP is mediated, in part, by protein kinase A phosphorylation of NFAT. The mechanism of regulation involves the creation of a phosphorylation-dependent binding site for 14-3-3. Decreased NFAT phosphorylation caused by the calcium-stimulated phosphatase calcineurin, or mutation of the PKA phosphorylation sites, disrupted 14-3-3 binding and increased NFAT transcription activity. In contrast, NFAT phosphorylation caused by cAMP increased 14-3-3 binding and reduced NFAT transcription activity. The regulated interaction between NFAT and 14-3-3 provides a mechanism for the integration of calcium and cAMP signaling pathways.


Cartilage ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 300-306 ◽  
Author(s):  
Satomi Abe ◽  
Hitoshi Nochi ◽  
Hiroshi Ito

Introduction We previously showed that articular chondrocytes (ACs) have immune privilege and immunomodulatory functions like those of mesenchymal stem cells. To elucidate these mechanisms, we focused on interleukin-2 (IL-2), which plays critical roles in lymphocyte mitogenic activity. The purpose of this study was to explore whether ACs affect the role of IL-2 underlying immunomodulatory functions. Material and Methods Irradiated human ACs from osteoarthritis donors were used. Third-party ACs were added to the mixed lymphocyte reaction (MLR) with or without recombinant human IL-2 (rhIL-2), and the levels of IL-2 and the soluble form of the IL-2 receptor α (sIL-2Rα) protein in supernatant were measured by enzyme-linked immunosorbent assay. Recombinant human IL-2 (rhIL-2) was also added to the MLR. To detect the expression of IL-2 receptor α (CD25) on lymphocytes in the MLR, flow cytometric analysis was performed. Last, ACs and allogeneic activated CD4+ T cell were co-cultured, and the expression of CD25 on activated T cells was examined by flow cytometry. Results Third-party ACs significantly inhibited the MLR and reduced the level of sIL-2Rα in a dose-dependent manner, but did not affect the concentration of IL-2. Exogenous rhIL-2 accelerated MLR but did not rescue the inhibitory effect of ACs. ACs inhibited the expression of CD25 on activated CD4+ T cells. Discussion Our results showed that third-party ACs inhibited the proliferation of allogeneic activated lymphocytes, thereby inhibiting production sIL-2Rα, although ACs did not affect IL-2 secretion from lymphocytes. Also, ACs inhibited CD25 expression on activated CD4+ T cells. Thus, ACs inhibited the immune response of allogeneic lymphocytes by inducing IL-2 nonresponsiveness.


Science ◽  
2021 ◽  
Vol 372 (6543) ◽  
pp. eaba4220 ◽  
Author(s):  
Tao Yue ◽  
Xiaoming Zhan ◽  
Duanwu Zhang ◽  
Ruchi Jain ◽  
Kuan-wen Wang ◽  
...  

Reactive oxygen species (ROS) increase in activated T cells because of metabolic activity induced to support T cell proliferation and differentiation. We show that these ROS trigger an oxidative stress response that leads to translation repression. This response is countered by Schlafen 2 (SLFN2), which directly binds transfer RNAs (tRNAs) to protect them from cleavage by the ribonuclease angiogenin. T cell–specific SLFN2 deficiency results in the accumulation of tRNA fragments, which inhibit translation and promote stress-granule formation. Interleukin-2 receptor β (IL-2Rβ) and IL-2Rγ fail to be translationally up-regulated after T cell receptor stimulation, rendering SLFN2-deficient T cells insensitive to interleukin-2’s mitogenic effects. SLFN2 confers resistance against the ROS-mediated translation-inhibitory effects of oxidative stress normally induced by T cell activation, permitting the robust protein synthesis necessary for T cell expansion and immunity.


1999 ◽  
Vol 13 (12) ◽  
pp. 1627-1636 ◽  
Author(s):  
Maria Bellio ◽  
Ana‐Carolina S. C. Oliveira ◽  
Claudia S. Mermelstein ◽  
Marcia A. M. Capella ◽  
João P. B. Viola ◽  
...  

1999 ◽  
Vol 19 (3) ◽  
pp. 2300-2307 ◽  
Author(s):  
Chi-Wing Chow ◽  
Mercedes Rincón ◽  
Roger J. Davis

ABSTRACT The nuclear factor of activated T cells (NFAT) transcription factor is implicated in expression of the cytokine interleukin-2 (IL-2). Binding sites for NFAT are located in the IL-2 promoter. Furthermore, pharmacological studies demonstrate that the drug cyclosporin A inhibits both NFAT activation and IL-2 expression. However, targeted disruption of the NFAT1 and NFAT2 genes in mice does not cause decreased IL-2 secretion. The role of NFAT in IL-2 gene expression is therefore unclear. Here we report the construction of a dominant-negative NFAT mutant (dnNFAT) that selectively inhibits NFAT-mediated gene expression. The inhibitory effect of dnNFAT is mediated by suppression of activation-induced nuclear translocation of NFAT. Expression of dnNFAT in cultured T cells caused inhibition of IL-2 promoter activity and decreased expression of IL-2 protein. Similarly, expression of dnNFAT in transgenic mice also caused decreased IL-2 gene expression. These data demonstrate that NFAT is a critical component of the signaling pathway that regulates IL-2 expression.


2013 ◽  
Vol 20 (2) ◽  
pp. 156-164 ◽  
Author(s):  
Y Zhang ◽  
M McClellan ◽  
L Efros ◽  
D Shi ◽  
B Bielekova ◽  
...  

Daclizumab is a humanized monoclonal antibody that prevents interleukin-2 (IL-2) binding to CD25, blocking IL-2 signaling by cells that require high-affinity IL-2 receptors to mediate IL-2 signaling. The phase 2a CHOICE study evaluating daclizumab as a treatment for multiple sclerosis (MS) included longitudinal analysis of activated T cell counts. Whereas an exposure-dependent relationship was observed between daclizumab and reductions in HLA-DR+-activated T cells, a similar relationship was not observed for reductions in CD25 levels. The objective of this report is to determine the mechanism by which daclizumab reduces CD25 levels on peripheral blood mononuclear cells (PBMCs) using cytometric techniques. Daclizumab reduced T cell CD25 levels through a mechanism that required the daclizumab-Fc domain interaction with Fc receptors (FcR) on monocytes, but not on natural killer (NK) cells, and was unrelated to internalization or cell killing. Activated CD4+ T cells and FoxP3+ Treg cells showed evidence of trogocytosis of the CD25 antigen in the presence of monocytes. A daclizumab variant that retained affinity for CD25 but lacked FcR binding did not induce trogocytosis and was significantly less potent as an inhibitor of IL-2-induced proliferation of PBMCs. In conclusion, Daclizumab-induced monocyte-mediated trogocytosis of CD25 from T cells appears to be an additional mechanism contributing to daclizumab inhibition of IL-2 signaling.


Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2181-2190 ◽  
Author(s):  
Maria Paola Martelli ◽  
Huamao Lin ◽  
Weiguo Zhang ◽  
Lawrence E. Samelson ◽  
Barbara E. Bierer

Abstract Activation of T cells can be initiated through cell surface molecules in addition to the T-cell receptor-CD3 (TCR-CD3) complex. In human T cells, ligation of the CD2 molecule by mitogenic pairs of anti-CD2 monoclonal antibodies activates T cells via biochemical signaling pathways similar but not identical to those elicited on TCR engagement. This study describes a key role for the p36/38 membrane adapter protein linker for T cell activation (LAT) in CD2-mediated T-cell activation. Following ligation of CD2 on the surface of the Jurkat T-cell line and human purified T cells, LAT was tyrosine phosphorylated and shown to associate in vivo with a number of other tyrosine phosphorylated proteins including PLCγ-1, Grb-2, and SLP-76. Using Jurkat cell lines deficient in ZAP70/Syk (P116) or LAT (ANJ3) expression, CD2-dependent PLCγ-1 and SLP-76 tyrosine phosphorylation required expression both of ZAP70 or Syk and of LAT. As predicted, the absence of either LAT or ZAP70/Syk kinases correlated with a defect in the induction of nuclear factor of activated T cells (NFAT) transcriptional activity, activation of the interleukin-2 promoter, and ERK phosphorylation following CD2 stimulation. These data suggest that LAT is an adapter protein important for the regulation of CD2-mediated T-cell activation.


Blood ◽  
1986 ◽  
Vol 67 (2) ◽  
pp. 279-284 ◽  
Author(s):  
O Ayanlar-Batuman ◽  
E Ebert ◽  
SP Hauptman

Abstract The present studies were designed to investigate the mechanism(s) of the defective T cell proliferative response to various stimuli in patients with B cell chronic lymphocytic leukemia B-CLL. In 14 patients with advanced B-CLL (stage III or IV) we found the T cell response in the autologous (auto) and allogeneic (allo) mixed lymphocyte reaction (MLR) to be 35.7% and 30% of the controls, respectively. Proliferation in the MLR depends upon the production of and response to interleukin 2 (IL 2), a T cell growth factor. IL 2 production in eight B-CLL patients was 22% of the control. The response to IL 2 was measured by the increase in the T cell proliferation in the MLR with the addition of IL 2. T cell proliferation in both the auto and allo MLR of CLL patients was significantly lower than in the controls after the addition of IL 2. The proliferative response of normal T cells to stimulation by CLL B cells was 50% of the control. This latter response was increased to control levels when cultures were supplemented with exogenous IL 2, suggesting that CLL B cells could stimulate IL 2 receptor generation in normal T cells in an allo MLR, but not IL 2 production. The presence of IL 2 receptors on activated T cells was directly determined using anti- Tac, a monoclonal antibody with specificity for the IL 2 receptor. Of the mitogen- or MLR-activated T cells in CLL patients, 6% and 10%, respectively, expressed Tac antigen, whereas identically stimulated control T cells were 60% and 47% Tac+, respectively. Our findings suggest that T cells in B-CLL are defective in their recognition of self or foreign major histocompatibility antigens as demonstrated by their impaired responsiveness in the MLR. Thus, these cells are unable to produce IL 2 or generate IL 2 receptors.


Sign in / Sign up

Export Citation Format

Share Document