Growth Factors Prevent Mitochondrial Dysfunction, Loss of Calcium Homeostasis, and Cell Injury, but Not ATP Depletion in Hippocampal Neurons Deprived of Glucose

1993 ◽  
Vol 121 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Mark P. Mattson ◽  
Ying Zhang ◽  
Soma Bose
2019 ◽  
Vol 21 (1) ◽  
pp. 220 ◽  
Author(s):  
Han-A Park ◽  
Nelli Mnatsakanyan ◽  
Katheryn Broman ◽  
Abigail U. Davis ◽  
Jordan May ◽  
...  

B-cell lymphoma-extra large (Bcl-xL) is an anti-apoptotic member of the Bcl2 family of proteins, which supports neurite outgrowth and neurotransmission by improving mitochondrial function. During excitotoxic stimulation, however, Bcl-xL undergoes post-translational cleavage to ∆N-Bcl-xL, and accumulation of ∆N-Bcl-xL causes mitochondrial dysfunction and neuronal death. In this study, we hypothesized that the generation of reactive oxygen species (ROS) during excitotoxicity leads to formation of ∆N-Bcl-xL. We further proposed that the application of an antioxidant with neuroprotective properties such as α-tocotrienol (TCT) will prevent ∆N-Bcl-xL-induced mitochondrial dysfunction via its antioxidant properties. Primary hippocampal neurons were treated with α-TCT, glutamate, or a combination of both. Glutamate challenge significantly increased cytosolic and mitochondrial ROS and ∆N-Bcl-xL levels. ∆N-Bcl-xL accumulation was accompanied by intracellular ATP depletion, loss of mitochondrial membrane potential, and cell death. α-TCT prevented loss of mitochondrial membrane potential in hippocampal neurons overexpressing ∆N-Bcl-xL, suggesting that ∆N-Bcl-xL caused the loss of mitochondrial function under excitotoxic conditions. Our data suggest that production of ROS is an important cause of ∆N-Bcl-xL formation and that preventing ROS production may be an effective strategy to prevent ∆N-Bcl-xL-mediated mitochondrial dysfunction and thus promote neuronal survival.


2003 ◽  
Vol 284 (5) ◽  
pp. F1046-F1055 ◽  
Author(s):  
Kamyar Zahedi ◽  
Zhaohui Wang ◽  
Sharon Barone ◽  
Anne E. Prada ◽  
Caitlin N. Kelly ◽  
...  

Ischemia-reperfusion injury (IRI) is the major cause of acute renal failure in native and allograft kidneys. Identifying the molecules and pathways involved in the pathophysiology of renal IRI will yield valuable new diagnostic and therapeutic information. To identify differentially regulated genes in renal IRI, RNA from rat kidneys subjected to an established renal IRI protocol (bilateral occlusion of renal pedicles for 30 min followed by reperfusion) and time-matched kidneys from sham-operated animals was subjected to suppression subtractive hybridization. The level of spermidine/spermine N 1-acetyltransferase (SSAT) mRNA, an essential enzyme for the catabolism of polyamines, increased in renal IRI. SSAT expression was found throughout normal kidney tubules, as detected by nephron segment RT-PCR. Northern blots demonstrated that the mRNA levels of SSAT are increased by greater than threefold in the renal cortex and by fivefold in the renal medulla at 12 h and returned to baseline at 48 h after ischemia. The increase in SSAT mRNA was paralleled by an increase in SSAT protein levels as determined by Western blot analysis. The concentration of putrescine in the kidney increased by ∼4- and ∼7.5-fold at 12 and 24 h of reperfusion, respectively, consistent with increased functional activity of SSAT. To assess the specificity of SSAT for tubular injury, a model of acute renal failure from Na+depletion (without tubular injury) was studied; SSAT mRNA levels remained unchanged in rats subjected to Na+ depletion. To distinguish SSAT increases from the effects of tubular injury vs. uremic toxins, SSAT was increased in cis-platinum-treated animals before the onset of renal failure. The expression of SSAT mRNA and protein increased by ∼3.5- and >10-fold, respectively, in renal tubule epithelial cells subjected to ATP depletion and metabolic poisoning (an in vitro model of kidney IRI). Our results suggest that SSAT is likely a new marker of tubular cell injury that distinguishes acute prerenal from intrarenal failure.


1994 ◽  
Vol 267 (1) ◽  
pp. C67-C74 ◽  
Author(s):  
A. L. Nieminen ◽  
A. K. Saylor ◽  
B. Herman ◽  
J. J. Lemasters

The importance of ATP depletion and mitochondrial depolarization in the toxicity of cyanide, oligomycin, and carbonyl cyanide m-cholorophenylhydrazone (CCCP), an uncoupler, was evaluated in rat hepatocytes. Oligomycin, an inhibitor of the reversible mitochondrial ATP synthase (F1F0-adenosinetriphosphatase), caused dose-dependent cell killing with 0.1 microgram/ml being the minimum concentration causing the maximum cell killing. Oligomycin also caused rapid ATP depletion without causing mitochondrial depolarization. Fructose (20 mM), a potent glycolytic substrate in liver, protected completely against oligomycin toxicity. CCCP (5 microM) also caused rapid killing of hepatocytes. Fructose retarded cell death caused by CCCP but failed to prevent lethal cell injury. Although oligomycin (1.0 microgram/ml) was lethally toxic by itself, in the presence of fructose it protected completely against CCCP-induced cell killing. Cyanide (2.5 mM), an inhibitor of mitochondrial respiration, caused rapid cell killing that was reversed by fructose. CCCP completely blocked fructose protection against cyanide, causing mitochondrial depolarization and rapid ATP depletion. In the presence of fructose and cyanide, oligomycin protected cells against CCCP-induced ATP depletion and cell death but did not prevent mitochondrial depolarization. In every instance, cell killing was associated with ATP depletion, whereas protection against lethal cell injury was associated with preservation of ATP. In conclusion, protection by fructose against toxicity of cyanide, oligomycin, and CCCP was mediated by glycolytic ATP formation rather than by preservation of the mitochondrial membrane potential. These findings support the hypothesis that inhibition of cellular ATP formation is a crucial event in the progression of irreversible cell injury.


2013 ◽  
Vol 34 (2) ◽  
pp. 227-234 ◽  
Author(s):  
Ke Wang ◽  
Ling Zhu ◽  
Xue Zhu ◽  
Kai Zhang ◽  
Biao Huang ◽  
...  

2017 ◽  
Vol 313 (4) ◽  
pp. F906-F913 ◽  
Author(s):  
Wei Zhang ◽  
Xiangjun Zhou ◽  
Qisheng Yao ◽  
Yutao Liu ◽  
Hao Zhang ◽  
...  

Exosomes are nano-sized vesicles produced and secreted by cells to mediate intercellular communication. The production and function of exosomes in kidney tissues and cells remain largely unclear. Hypoxia is a common pathophysiological condition in kidneys. This study was designed to characterize exosome production during hypoxia of rat renal proximal tubular cells (RPTCs), investigate the regulation by hypoxia-inducible factor-1 (HIF-1), and determine the effect of the exosomes on ATP-depletion-induced tubular cell injury. Hypoxia did not change the average sizes of exosomes secreted by RPTCs, but it significantly increased exosome production in a time-dependent manner. HIF-1 induction with dimethyloxalylglycine also promoted exosome secretion, whereas pharmacological and genetic suppression of HIF-1 abrogated the increase of exosome secretion under hypoxia. The exosomes from hypoxic RPTCs had inhibitory effects on apoptosis of RPTCs following ATP depletion. The protective effects were lost in the exosomes from HIF-1α knockdown cells. It is concluded that hypoxia stimulates exosome production and secretion in renal tubular cells. The exosomes from hypoxic cells are protective against renal tubular cell injury. HIF-1 mediates exosome production during hypoxia and contributes to the cytoprotective effect of the exosomes.


1990 ◽  
Vol 259 (2) ◽  
pp. H582-H591 ◽  
Author(s):  
G. E. Revtyak ◽  
L. M. Buja ◽  
K. R. Chien ◽  
W. B. Campbell

Exposure of cultured neonatal rat myocardial cells to metabolic inhibitors results in cellular ATP depletion. If prolonged, arachidonic acid is released from membrane phospholipid and irreversible cell injury may ensue. The present study was undertaken to identify the major products of arachidonic acid formed when myocardial cells are depleted of ATP by the metabolic inhibitors 2-deoxy-D-glucose (2-DG) and oligomycin (OG). Under basal conditions, myocardial cells metabolize [3H]arachidonic acid to 6-keto-[3H]prostaglandin (PG)F1 alpha, [3H]PGE2, [3H]PGF2 alpha, 12-[3H]hydroxy-6,8,11,14-eicosatetraenoic acid (12-[3H]HETE) and 11-[3H]HETE, indicating that these cells contain both cyclooxygenase and lipoxygenase pathways. After exposure of myocardial cells to 10 mM 2-DG and 0.1 micrograms/ml OG for 4 h, the basal release of 6-keto-PGF1 alpha and PGE2 is reduced by 3.4-fold and 2-fold, respectively. Supernatants obtained from cells prelabeled with [3H]arachidonic acid and treated with 2-DG and OG for 4 or 12 h did not contain detectable [3H]prostaglandins or [3H]HETEs, but only [3H]arachidonic acid when compared with untreated cells. After 4 and 12 h of treatment with 2-DG and OG, there was a 3.4- and 4.4-fold net release of endogenous arachidonic acid from treated compared with untreated cells. When stimulated with bradykinin, melittin (a phospholipase activator), or arachidonic acid, the synthesis of 6-keto-PGF1 alpha increased to a similar extent in both 2-DG- and OG-treated and -untreated cells. Hence, ATP-depleted myocardial cells do not convert arachidonic acid to oxygenated metabolites under basal conditions. The reduced arachidonic acid metabolism during ATP depletion is not due to direct inactivation of cyclooxygenase or membrane phospholipase. This impairment in arachidonic acid metabolism may represent an early event in myocardial cell injury.


2020 ◽  
Vol 319 (6) ◽  
pp. E1053-E1060
Author(s):  
Logan K. Townsend ◽  
Henver S. Brunetta ◽  
Marcelo A. S. Mori

Obesity and insulin resistance (IR) are associated with endoplasmic reticulum (ER) stress and mitochondrial dysfunction in several tissues. Although for many years mitochondrial and ER function were studied separately, these organelles also connect to produce interdependent functions. Communication occurs at mitochondria-associated ER membranes (MAMs) and regulates lipid and calcium homeostasis, apoptosis, and the exchange of adenine nucleotides, among other things. Recent evidence suggests that MAMs contribute to organelle, cellular, and systemic metabolism. In obesity and IR models, metabolic tissues such as the liver, skeletal muscle, pancreas, and adipose tissue present alterations in MAM structure or function. The purpose of this mini review is to highlight the MAM disruptions that occur in each tissue during obesity and IR and its relationship with glucose homeostasis and IR. We also discuss the current controversy that surrounds MAMs’ role in the development of IR.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Nora E. Gray ◽  
Jonathan A. Zweig ◽  
Donald G. Matthews ◽  
Maya Caruso ◽  
Joseph F. Quinn ◽  
...  

Centella asiatica has been used for centuries to enhance memory. We have previously shown that a water extract of Centella asiatica (CAW) protects against the deleterious effects of amyloid-β (Aβ) in neuroblastoma cells and attenuates Aβ-induced cognitive deficits in mice. Yet, the neuroprotective mechanism of CAW has yet to be thoroughly explored in neurons from these animals. This study investigates the effects of CAW on neuronal metabolism and oxidative stress in isolated Aβ-expressing neurons. Hippocampal neurons from amyloid precursor protein overexpressing Tg2576 mice and wild-type (WT) littermates were treated with CAW. In both genotypes, CAW increased the expression of antioxidant response genes which attenuated the Aβ-induced elevations in reactive oxygen species (ROS) and lipid peroxidation in Tg2576 neurons. CAW also improved mitochondrial function in both genotypes and increased the expression of electron transport chain enzymes and mitochondrial labeling, suggesting an increase in mitochondrial content. These data show that CAW protects against mitochondrial dysfunction and oxidative stress in Aβ-exposed hippocampal neurons which could contribute to the beneficial effects of the extract observed in vivo. Since CAW also improved mitochondrial function in the absence of Aβ, these results suggest a broader utility for other conditions where neuronal mitochondrial dysfunction occurs.


2009 ◽  
Vol 451 (2) ◽  
pp. 119-123 ◽  
Author(s):  
Parvana Hajieva ◽  
Christoph Kuhlmann ◽  
Heiko J. Luhmann ◽  
Christian Behl

Sign in / Sign up

Export Citation Format

Share Document