Hybrid Tetanus Toxin C Fragment-Diphtheria Toxin Translocation Domain Allows Specific Gene Transfer into PC12 Cells

2002 ◽  
Vol 177 (1) ◽  
pp. 75-87 ◽  
Author(s):  
Shahram Barati ◽  
Fariba Chegini ◽  
Plinio Hurtado ◽  
Robert A. Rush
2002 ◽  
Vol 9 (4) ◽  
pp. 365-371 ◽  
Author(s):  
Anders Høgset ◽  
Birgit Øvstebø Engesæter ◽  
Lina Prasmickaite ◽  
Kristian Berg ◽  
Øystein Fodstad ◽  
...  

Gene Therapy ◽  
1999 ◽  
Vol 6 (8) ◽  
pp. 1469-1474 ◽  
Author(s):  
H J Haisma ◽  
H M Pinedo ◽  
A van Rijswijk ◽  
I van der Meulen-Muileman ◽  
B A Sosnowski ◽  
...  

2015 ◽  
Vol 112 (22) ◽  
pp. E2947-E2956 ◽  
Author(s):  
Makoto Matsuyama ◽  
Yohei Ohashi ◽  
Tadashi Tsubota ◽  
Masae Yaguchi ◽  
Shigeki Kato ◽  
...  

Pathway-specific gene delivery is requisite for understanding complex neuronal systems in which neurons that project to different target regions are locally intermingled. However, conventional genetic tools cannot achieve simultaneous, independent gene delivery into multiple target cells with high efficiency and low cross-reactivity. In this study, we systematically screened all receptor–envelope pairs resulting from the combination of four avian sarcoma leukosis virus (ASLV) envelopes (EnvA, EnvB, EnvC, and EnvE) and five engineered avian-derived receptors (TVA950, TVBS3, TVC, TVBT, and DR-46TVB) in vitro. Four of the 20 pairs exhibited both high infection rates (TVA–EnvA, 99.6%; TVBS3–EnvB, 97.7%; TVC–EnvC, 98.2%; and DR-46TVB–EnvE, 98.8%) and low cross-reactivity (<2.5%). Next, we tested these four receptor–envelope pairs in vivo in a pathway-specific gene-transfer method. Neurons projecting into a limited somatosensory area were labeled with each receptor by retrograde gene transfer. Three of the four pairs exhibited selective transduction into thalamocortical neurons expressing the paired receptor (>98%), with no observed cross-reaction. Finally, by expressing three receptor types in a single animal, we achieved pathway-specific, differential fluorescent labeling of three thalamic neuronal populations, each projecting into different somatosensory areas. Thus, we identified three orthogonal pairs from the list of ASLV subgroups and established a new vector system that provides a simultaneous, independent, and highly specific genetic tool for transferring genes into multiple target cells in vivo. Our approach is broadly applicable to pathway-specific labeling and functional analysis of diverse neuronal systems.


FEBS Letters ◽  
1998 ◽  
Vol 433 (1-2) ◽  
pp. 37-40 ◽  
Author(s):  
Makoto Sawada ◽  
Fumihiro Imai ◽  
Hiromi Suzuki ◽  
Motoharu Hayakawa ◽  
Tetsuo Kanno ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (22) ◽  
pp. 4334-4342 ◽  
Author(s):  
Qi Zhou ◽  
Irene C. Schneider ◽  
Inan Edes ◽  
Annemarie Honegger ◽  
Patricia Bach ◽  
...  

AbstractTransfer of tumor-specific T-cell receptor (TCR) genes into patient T cells is a promising strategy in cancer immunotherapy. We describe here a novel vector (CD8-LV) derived from lentivirus, which delivers genes exclusively and specifically to CD8+ cells. CD8-LV mediated stable in vitro and in vivo reporter gene transfer as well as efficient transfer of genes encoding TCRs recognizing the melanoma antigen tyrosinase. Strikingly, T cells genetically modified with CD8-LV killed melanoma cells reproducibly more efficiently than CD8+ cells transduced with a conventional lentiviral vector. Neither TCR expression levels, nor the rate of activation-induced death of transduced cells differed between both vector types. Instead, CD8-LV transduced cells showed increased granzyme B and perforin levels as well as an up-regulation of CD8 surface expression in a small subpopulation of cells. Thus, a possible mechanism for CD8-LV enhanced tumor cell killing may be based on activation of the effector functions of CD8+ T cells by the vector particle displaying OKT8-derived CD8-scFv and an increase of the surface density of CD8, which functions as coreceptor for tumor-cell recognition. CD8-LV represents a powerful novel vector for TCR gene therapy and other applications in immunotherapy and basic research requiring CD8+ cell-specific gene delivery.


Sign in / Sign up

Export Citation Format

Share Document