Dust and Ice Deposition in the Martian Geologic Record

Icarus ◽  
2000 ◽  
Vol 144 (2) ◽  
pp. 254-266 ◽  
Author(s):  
K Tanaka
Keyword(s):  
1988 ◽  
Vol 62 (01) ◽  
pp. 126-132 ◽  
Author(s):  
Douglas S. Jones ◽  
Roger W. Portell

Whole body asteroid fossils are rare in the geologic record and previously unreported from the Cenozoic of Florida. However, specimens of the extant species,Heliaster microbrachiusXantus, were recently discovered in upper Pliocene deposits. This marks the first reported fossil occurrence of the monogeneric Heliasteridae, a group today confined to the eastern Pacific. This discovery provides further non-molluscan evidence of the close similarities between the Neogene marine fauna of Florida and the modern fauna of the eastern Pacific. The extinction of the heliasters in the western Atlantic is consistent with the pattern of many other marine groups in the region which suffered impoverishment following uplift of the Central American isthmus.


1992 ◽  
Vol 38 (1) ◽  
pp. 46-59 ◽  
Author(s):  
Robert M. Negrini ◽  
Jonathan O. Davis

AbstractPaleomagnetic records are used to correlate sedimentary sequences from pluvial Lakes Chewaucan and Russell in the western Great Basin. This correlation is the basis for age control in the relatively poorly dated sequence from Lake Chewaucan. The resulting chronology supports a lack of sedimentation in Lake Chewaucan during the interval 27,400 to 23,200 yr B.P., an assertion supported by the presence of a lag deposit at the corresponding stratigraphic horizon. Because the Lake Chewaucan outcrop (near Summer Lake, Oregon) is near the bottom of the lake basin, we conclude that Lake Chewaucan was at a lowstand during this time interval. The Chewaucan lowstand is coeval with the lowstand accompanying the Wizard's Beach Recession (isotope stage 3) previously seen in the geologic record from nearby pluvial Lake Lahontan. The ages of six tephra layers, including the Trego Hot Springs tephra, were also estimated using the paleomagnetic correlation. Together, the new age of the Trego Hot Springs tephra (21,800 yr B.P.) and the lake surface level prehistory of Lake Chewaucan imply a revised model for the lake surface level prehistory of Lake Lahontan. The revised model includes a longer duration for the Wizard's Beach Recession and the occurrence of a younger lowstand of short duration soon after the lowstand corresponding to the Wizard's Beach Recession.


1983 ◽  
Vol 21 (4) ◽  
pp. 828 ◽  
Author(s):  
Thomas J. Crowley

2021 ◽  
Vol 91 (10) ◽  
pp. 1040-1066
Author(s):  
Thomas C. Neal ◽  
Christian M. Appendini ◽  
Eugene C. Rankey

ABSTRACT Although carbonate ramps are ubiquitous in the geologic record, the impacts of oceanographic processes on their facies patterns are less well constrained than with other carbonate geomorphic forms such as isolated carbonate platforms. To better understand the role of physical and chemical oceanographic forces on geomorphic and sedimentologic variability of ramps, this study examines in-situ field measurements, remote-sensing data, and hydrodynamic modeling of the nearshore inner ramp of the modern northeastern Yucatán Shelf, Mexico. The results reveal how sediment production and accumulation are influenced by the complex interactions of the physical, chemical, and biological processes on the ramp. Upwelled, cool, nutrient-rich waters are transported westward across the ramp and concentrated along the shoreline by cold fronts (Nortes), westerly regional currents, and longshore currents. This influx supports a mix of both heterozoan and photozoan fauna and flora in the nearshore realm. Geomorphically, the nearshore parts of this ramp system in the study area include lagoon, barrier island, and shoreface environments, influenced by the mixed-energy (wave and tidal) setting. Persistent trade winds, episodic tropical depressions, and winter storms generate waves that propagate onto the shoreface. Extensive shore-parallel sand bodies (beach ridges and subaqueous dune fields) of the high-energy, wave-dominated upper shoreface and foreshore are composed of fine to coarse skeletal sand, lack mud, and include highly abraded, broken and bored grains. The large shallow lagoon is mixed-energy: wave-dominated near the inlet, it transitions to tide-dominated in the more protected central and eastern regions. Lagoon sediment consists of Halimeda-rich muddy gravel and sand. Hydrodynamic forces are especially strong where bathymetry focuses water flow, as occurs along a promontory and at the lagoon inlet, and can form subaqueous dunes. Explicit comparison among numerical models of conceptual shorefaces in which variables are altered and isolated systematically demonstrates the influences of the winds, waves, tides, and currents on hydrodynamics across a broad spectrum of settings (e.g., increased tidal range, differing wind and wave conditions). Results quantify how sediment transport patterns are determined by wave height and direction relative to the shoreface, but tidal forces locally control geomorphic and sedimentologic character. Similarly, the physical oceanographic processes acting throughout the year (e.g., daily tides, episodic winter Nortes, and persistent easterly winds and waves) have more impact on geomorphology and sedimentology of comparable nearshore systems than intense, but infrequent, hurricanes. Overall, this study provides perspectives on how upwelling, nutrient levels, and hydrodynamics influence the varied sedimentologic and geomorphic character of the nearshore areas of this high-energy carbonate ramp system. These results also provide for more accurate and realistic conceptual models of the depositional variability for a spectrum of modern and ancient ramp systems.


1894 ◽  
Vol 1 (8) ◽  
pp. 340-349 ◽  
Author(s):  
Warren Upham

The most interesting and difficult climatic problem presented in all the geologic record is that of its latest period, immediately preceding the present, to discover the causes, first, of the accumulation, and later, of the rapid final melting of its vast sheets of land-ice. The fossil floras of Greenland and Spitzbergen indicate that those far northern latitudes enjoyed a temperate climate in the Miocene period; and, from the absence of glacial drift through the great series of Tertiary and Mesozoic formations, we infer that climates as mild as those of the present day had prevailed during long eras before the Ice-age.


1984 ◽  
Vol 30 (2) ◽  
pp. 121 ◽  
Author(s):  
Domenico Rio ◽  
Rodolfo Sprovieri ◽  
Enrico Di Stefano ◽  
Isabella Raffi

1986 ◽  
Vol 23 (11) ◽  
pp. 1700-1708 ◽  
Author(s):  
Denis A. St-Onge ◽  
Jean Lajoie

The late Quaternary olistostrome exposed in the lower Coppermine River valley fills a paleovalley that ranges in apparent width from 150 to 400 m and was cut into Precambrian bedrock before the last glaciation. The olistostrome is here named the Sleigh Creek Formation. The coarse fraction of the formation is matrix supported; beds are massive or reversely graded and have sharp, nonerosive contacts. These characteristics suggest deposition of the coarse fraction by debris flows. The olistostrome sequence is bracketed by, and wedged into, a marine rhythmite sequence, which indicates that deposition occurred in a marine environment.About 10 500 years BP glacier ice in the Coronation Gulf lowland dammed the valley to the south, which was occupied by glacial Lake Coppermine. Sediments accumulated in this lake in a 30 m thick, coarsening upward sequence ranging from glaciolacustrine rhythmites of silt and fine sand at the base to coarse sand alluvium, and deltaic gravels at the top. As the Coronation Gulf lowlands became ice free, the Coppermine River reoccupied its former drainage course to the north. The steep south to north gradient and rapid downcutting by the river through the glacial lake sediments produced unstable slope conditions. The resulting debris flows filled a bedrock valley network below the postglacial sea level, forming the diamicton sequence.The interpretation of the Sleigh Creek Formation raises questions concerning silimar diamicton deposits usually defined as "flowtills." More generally, the results of this study indicate that care must be used when attempting paleogeographic reconstructions of "glaciogenic" deposits in marine sequences in any part of the geologic record.


2021 ◽  
Author(s):  
Brendon Quirk ◽  
Elizabeth Huss ◽  
Benjamin Laabs ◽  
Eric Leonard ◽  
Joseph Licciardi ◽  
...  

Abstract. The geologic record of mountain glaciations is a robust indicator of terrestrial paleoclimate change. During the last glaciation, mountain ranges across the western U.S. hosted glaciers while the Cordilleran and Laurentide ice sheets flowed to the west and east of the continental divide, respectively. Records detailing the chronologies and paleoclimate significance of these ice advances have been developed for many sites across North America. However, relatively few glacial records have been developed for mountain glaciers in the northern Rocky Mountains near ice sheet margins. Here, we report cosmogenic beryllium-10 surface exposure ages and numerical glacier modeling results showing that mountain glaciers in the northern Rockies abandoned terminal moraines after the end of the Last Glacial Maximum around 17–18 ka and could have been sustained by −10 to −8.5 °C temperature depressions relative to modern assuming similar or drier than modern precipitation. Additionally, we present a deglacial chronology from the northern Rocky Mountains that indicates while there is considerable variability in initial moraine abandonment ages across the Rocky Mountains, the pace of subsequent ice retreat through the Lateglacial exhibits some regional coherence. Our results provide insight on potential regional mechanisms driving the initiation of and sustained deglaciation in the western U.S. including rising atmospheric CO2 and ice sheet collapse.


Sign in / Sign up

Export Citation Format

Share Document