scholarly journals Subgroups of Type A1 Containing a Fixed Unipotent Element in an Algebraic Group

2000 ◽  
Vol 231 (1) ◽  
pp. 53-66 ◽  
Author(s):  
Richard Proud ◽  
Jan Saxl ◽  
Donna Testerman
Author(s):  
Dean Alvis ◽  
George Lusztig

Let G be a connected reductive algebraic group over complex numbers. To each unipotent element u ε G (up to conjugacy) and to the unit representation of the group of components of the centralizer of u, Springer (11), (12) associates an irreducible representation of the Weyl group W of G. The tensor product of that representation with the sign representation will be denoted ρu. (This agrees with the notation of (5).) This representation may be realized as a subspace of the cohomology in dimension 2β(u) of the variety of Borel subgroups containing u, where β(u) = dim . For example, when u = 1, ρu is the sign representation of W. The map u → ρu defines an injective map from the set of unipotent conjugacy classes in G to the set of irreducible representations of W (up to isomorphism). Our purpose is to describe this map in the case where G is simple of type Eu (n = 6, 7, 8). (When G is classical or of type F4, this map is described by Shoji (9), (10); the case where G is of type G2 is contained in (11).


2018 ◽  
Vol 21 (3) ◽  
pp. 365-396 ◽  
Author(s):  
Mikko Korhonen

Abstract Let G be a simple algebraic group over an algebraically closed field K of characteristic {p>0} . We consider connected reductive subgroups X of G that contain a given distinguished unipotent element u of G. A result of Testerman and Zalesski [D. Testerman and A. Zalesski, Irreducibility in algebraic groups and regular unipotent elements, Proc. Amer. Math. Soc. 141 2013, 1, 13–28] shows that if u is a regular unipotent element, then X cannot be contained in a proper parabolic subgroup of G. We generalize their result and show that if u has order p, then except for two known examples which occur in the case {(G,p)=(C_{2},2)} , the subgroup X cannot be contained in a proper parabolic subgroup of G. In the case where u has order {>p} , we also present further examples arising from indecomposable tilting modules with quasi-minuscule highest weight.


2019 ◽  
Vol 7 ◽  
Author(s):  
TIMOTHY C. BURNESS ◽  
DONNA M. TESTERMAN

Let $G$ be a simple exceptional algebraic group of adjoint type over an algebraically closed field of characteristic $p>0$ and let $X=\text{PSL}_{2}(p)$ be a subgroup of $G$ containing a regular unipotent element $x$ of $G$. By a theorem of Testerman, $x$ is contained in a connected subgroup of $G$ of type $A_{1}$. In this paper we prove that with two exceptions, $X$ itself is contained in such a subgroup (the exceptions arise when $(G,p)=(E_{6},13)$ or $(E_{7},19)$). This extends earlier work of Seitz and Testerman, who established the containment under some additional conditions on $p$ and the embedding of $X$ in $G$. We discuss applications of our main result to the study of the subgroup structure of finite groups of Lie type.


2020 ◽  
Author(s):  
Randolph C Grace ◽  
Nicola J. Morton ◽  
Matt Grice ◽  
Kate Stuart ◽  
Simon Kemp

Grace et al. (2018) developed an ‘artificial algebra’ task in which participants learn to make an analogue response based on a combination of non-symbolic magnitudes by feedback and without explicit instruction. Here we tested if participants could learn to add stimulus magnitudes in this task in accord with the properties of an algebraic group. Three pairs of experiments tested the group properties of commutativity (Experiments 1a-b), identity and inverse existence (Experiments 2a-b) and associativity (Experiments 3a-b), with both line length and brightness modalities. Transfer designs were used in which participants responded on trials with feedback based on sums of magnitudes and later were tested with novel stimulus configurations. In all experiments, correlations of average responses with magnitude sums were high on trials with feedback, r = .97 and .96 for Experiments 1a-b, r = .97 and .96 for Experiments 2a-b, and ranged between r = .97 and .99 for Experiment 3a and between r = .82 and .95 for Experiment 3b. Responding on transfer trials was accurate and provided strong support for commutativity, identity and inverse existence, and associativity with line length, and for commutativity and identity and inverse existence with brightness. Deviations from associativity in Experiment 3b suggested that participants were averaging rather than adding brightness magnitudes. Our results confirm that the artificial algebra task can be used to study implicit computation and suggest that representations of magnitudes may have a structure similar to an algebraic group.


Author(s):  
LUCAS FRESSE ◽  
IVAN PENKOV

AbstractLet G be one of the ind-groups GL(∞), O(∞), Sp(∞), and let P1, ..., Pℓ be an arbitrary set of ℓ splitting parabolic subgroups of G. We determine all such sets with the property that G acts with finitely many orbits on the ind-variety X1 × × Xℓ where Xi = G/Pi. In the case of a finite-dimensional classical linear algebraic group G, the analogous problem has been solved in a sequence of papers of Littelmann, Magyar–Weyman–Zelevinsky and Matsuki. An essential difference from the finite-dimensional case is that already for ℓ = 2, the condition that G acts on X1 × X2 with finitely many orbits is a rather restrictive condition on the pair P1, P2. We describe this condition explicitly. Using the description we tackle the most interesting case where ℓ = 3, and present the answer in the form of a table. For ℓ ≥ 4 there always are infinitely many G-orbits on X1 × × Xℓ.


Author(s):  
Maike Gruchot ◽  
Alastair Litterick ◽  
Gerhard Röhrle

AbstractIn this note, we unify and extend various concepts in the area of G-complete reducibility, where G is a reductive algebraic group. By results of Serre and Bate–Martin–Röhrle, the usual notion of G-complete reducibility can be re-framed as a property of an action of a group on the spherical building of the identity component of G. We show that other variations of this notion, such as relative complete reducibility and $$\sigma $$ σ -complete reducibility, can also be viewed as special cases of this building-theoretic definition, and hence a number of results from these areas are special cases of more general properties.


2020 ◽  
Vol 8 ◽  
Author(s):  
MAIKE GRUCHOT ◽  
ALASTAIR LITTERICK ◽  
GERHARD RÖHRLE

We study a relative variant of Serre’s notion of $G$ -complete reducibility for a reductive algebraic group $G$ . We let $K$ be a reductive subgroup of $G$ , and consider subgroups of $G$ that normalize the identity component $K^{\circ }$ . We show that such a subgroup is relatively $G$ -completely reducible with respect to $K$ if and only if its image in the automorphism group of $K^{\circ }$ is completely reducible. This allows us to generalize a number of fundamental results from the absolute to the relative setting. We also derive analogous results for Lie subalgebras of the Lie algebra of $G$ , as well as ‘rational’ versions over nonalgebraically closed fields.


2009 ◽  
Vol 146 (1) ◽  
pp. 21-57 ◽  
Author(s):  
Harald Grobner

AbstractLetGbe the simple algebraic group Sp(2,2), to be defined over ℚ. It is a non-quasi-split, ℚ-rank-two inner form of the split symplectic group Sp8of rank four. The cohomology of the space of automorphic forms onGhas a natural subspace, which is spanned by classes represented by residues and derivatives of cuspidal Eisenstein series. It is called Eisenstein cohomology. In this paper we give a detailed description of the Eisenstein cohomologyHqEis(G,E) ofGin the case of regular coefficientsE. It is spanned only by holomorphic Eisenstein series. For non-regular coefficientsEwe really have to detect the poles of our Eisenstein series. SinceGis not quasi-split, we are out of the scope of the so-called ‘Langlands–Shahidi method’ (cf. F. Shahidi,On certainL-functions, Amer. J. Math.103(1981), 297–355; F. Shahidi,On the Ramanujan conjecture and finiteness of poles for certainL-functions, Ann. of Math. (2)127(1988), 547–584). We apply recent results of Grbac in order to find the double poles of Eisenstein series attached to the minimal parabolicP0ofG. Having collected this information, we determine the square-integrable Eisenstein cohomology supported byP0with respect to arbitrary coefficients and prove a vanishing result. This will exemplify a general theorem we prove in this paper on the distribution of maximally residual Eisenstein cohomology classes.


Sign in / Sign up

Export Citation Format

Share Document