Purification, Crystallization and Space Group Determination of DNA Repair Enzyme Exonuclease III from E. coli

1993 ◽  
Vol 229 (1) ◽  
pp. 239-242 ◽  
Author(s):  
Che-Fu Kuo ◽  
Duncan E. McRee ◽  
Richard P. Cunningham ◽  
John A. Tainer
1994 ◽  
Vol 726 (1 DNA Damage) ◽  
pp. 223-235 ◽  
Author(s):  
CHE-FU KUO ◽  
CLIFFORD D. MOL ◽  
MARIA M. THAYER ◽  
RICHARD P. CUNNINGHAM ◽  
JOHN A. TAINERC

2003 ◽  
Vol 185 (18) ◽  
pp. 5380-5390 ◽  
Author(s):  
José M. Salas-Pacheco ◽  
Norma Urtiz-Estrada ◽  
Guadalupe Martínez-Cadena ◽  
Ronald E. Yasbin ◽  
Mario Pedraza-Reyes

ABSTRACT The enzymatic properties and the physiological function of the type IV apurinic/apyrimidinic (AP)-endonuclease homolog of Bacillus subtilis, encoded by yqfS, a gene specifically expressed in spores, were studied here. To this end, a recombinant YqfS protein containing an N-terminal His6 tag was synthesized in Escherichia coli and purified to homogeneity. An anti-His6-YqfS polyclonal antibody exclusively localized YqfS in cell extracts prepared from B. subtilis spores. The His6-YqfS protein demonstrated enzymatic properties characteristic of the type IV family of DNA repair enzymes, such as AP-endonucleases and 3′-phosphatases. However, the purified protein lacked both 5′-phosphatase and exonuclease III activities. YqfS showed not only a high level of amino acid identity with E. coli Nfo but also a high resistance to inactivation by EDTA, in the presence of DNA containing AP sites (AP-DNA). These results suggest that YqfS possesses a trinuclear Zn center in which the three metal atoms are intimately coordinated by nine conserved basic residues and two water molecules. Electrophoretic mobility shift assays demonstrated that YqfS possesses structural properties that permit it to bind and scan undamaged DNA as well as to strongly interact with AP-DNA. The ability of yqfS to genetically complement the DNA repair deficiency of an E. coli mutant lacking the major AP-endonucleases Nfo and exonuclease III strongly suggests that its product confers protection to cells against the deleterious effects of oxidative promoters and alkylating agents. Thus, we conclude that YqfS of B. subtilis is a spore-specific protein that has structural and enzymatic properties required to participate in the repair of AP sites and 3′ blocking groups of DNA generated during both spore dormancy and germination.


2016 ◽  
Vol 72 (4) ◽  
pp. 512-519 ◽  
Author(s):  
Katherine A. Donovan ◽  
Sarah C. Atkinson ◽  
Sarah A. Kessans ◽  
Fen Peng ◽  
Tim F. Cooper ◽  
...  

Pyruvate kinase is a key regulatory enzyme involved in the glycolytic pathway. The crystal structure ofEscherichia colitype I pyruvate kinase was first solved in 1995 at 2.5 Å resolution. However, the space group was ambiguous, being either primitive orthorhombic (P212121) orC-centred orthorhombic (C2221). Here, the structure determination and refinement ofE. colitype I pyruvate kinase to 2.28 Å resolution are presented. Using the same crystallization conditions as reported previously, the enzyme was found to crystallize in space groupP21. Determination of the space group was complicated owing to anisotropic data, pseudo-translational noncrystallographic symmetry and the pseudo-merohedrally twinned nature of the crystal, which was found to have very close to 50% twinning, leading to apparent orthorhombic symmetry and absences that were not inconsistent withP212121. The unit cell contained two tetramers in the asymmetric unit (3720 residues) and, when compared with the orthorhombic structure, virtually all of the residues could be easily modelled into the density. Averaging of reflections into the lower symmetry space group with twinning provided tidier electron density that allowed ∼30 missing residues of the lid domain to be modelled for the first time. Moreover, residues in a flexible loop could be modelled and sulfate molecules are found in the allosteric binding domain, identifying the pocket that binds the allosteric activator fructose 1,6-bisphosphate in this isozyme for the first time. Lastly, we note the pedagogical benefits of difficult structures to emerging crystallographers.


1993 ◽  
Vol 13 (9) ◽  
pp. 5370-5376 ◽  
Author(s):  
L J Walker ◽  
C N Robson ◽  
E Black ◽  
D Gillespie ◽  
I D Hickson

The DNA binding activity of the c-jun proto-oncogene product is inhibited by oxidation of a specific cysteine residue (Cys-252) in the DNA binding domain. Jun protein inactivated by oxidation of this residue can be efficiently reactivated by a factor from human cell nuclei, recently identified as a DNA repair enzyme (termed HAP1 or Ref-1). The HAP1 protein consists of a core domain, which is highly conserved in a family of prokaryotic and eukaryotic DNA repair enzymes, and a 61-amino-acid N-terminal domain absent from bacterial homologs such as Escherichia coli exonuclease III. The eukaryote-specific N-terminal domain was dispensable for the DNA repair functions of the HAP1 protein but was essential for reactivation of the DNA binding activity of oxidized Jun protein. Consistent with this finding, exonuclease III protein could not reactive Jun. A minimal 26-residue region of the N-terminal domain proximal to the core of the HAP1 enzyme was required for redox activity. By site-directed mutagenesis, cysteine 65 was identified as the redox active site in the HAP1 enzyme. In addition, it is proposed that cysteine 93 interacts with the redox active site, probably via disulfide bridge formation. It is concluded that the HAP1 protein has evolved a novel redox activation domain capable of regulating the DNA binding activity of a proto-oncogene product which is not essential for its DNA repair functions. Identification of a putative active site cysteine residue should facilitate analysis of the mechanism by which the HAP1 protein may alter the redox state of a wide range of transcription factors.


2019 ◽  
Vol 1060 ◽  
pp. 30-44 ◽  
Author(s):  
Chang Yeol Lee ◽  
Hansol Kim ◽  
Ki Soo Park ◽  
Hyun Gyu Park

1993 ◽  
Vol 13 (9) ◽  
pp. 5370-5376
Author(s):  
L J Walker ◽  
C N Robson ◽  
E Black ◽  
D Gillespie ◽  
I D Hickson

The DNA binding activity of the c-jun proto-oncogene product is inhibited by oxidation of a specific cysteine residue (Cys-252) in the DNA binding domain. Jun protein inactivated by oxidation of this residue can be efficiently reactivated by a factor from human cell nuclei, recently identified as a DNA repair enzyme (termed HAP1 or Ref-1). The HAP1 protein consists of a core domain, which is highly conserved in a family of prokaryotic and eukaryotic DNA repair enzymes, and a 61-amino-acid N-terminal domain absent from bacterial homologs such as Escherichia coli exonuclease III. The eukaryote-specific N-terminal domain was dispensable for the DNA repair functions of the HAP1 protein but was essential for reactivation of the DNA binding activity of oxidized Jun protein. Consistent with this finding, exonuclease III protein could not reactive Jun. A minimal 26-residue region of the N-terminal domain proximal to the core of the HAP1 enzyme was required for redox activity. By site-directed mutagenesis, cysteine 65 was identified as the redox active site in the HAP1 enzyme. In addition, it is proposed that cysteine 93 interacts with the redox active site, probably via disulfide bridge formation. It is concluded that the HAP1 protein has evolved a novel redox activation domain capable of regulating the DNA binding activity of a proto-oncogene product which is not essential for its DNA repair functions. Identification of a putative active site cysteine residue should facilitate analysis of the mechanism by which the HAP1 protein may alter the redox state of a wide range of transcription factors.


Nature ◽  
1995 ◽  
Vol 374 (6520) ◽  
pp. 381-386 ◽  
Author(s):  
Clifford D. Mol ◽  
Che-Fu Kuo ◽  
Maria M. Thayer ◽  
Richard P. Cunningham ◽  
John A. Tainer

Sign in / Sign up

Export Citation Format

Share Document