scholarly journals Water mass transformation in the Barents Sea — application of the Hamburg Shelf Ocean Model (HamSOM)

1997 ◽  
Vol 54 (3) ◽  
pp. 351-365 ◽  
Author(s):  
I Harms
2012 ◽  
Vol 42 (8) ◽  
pp. 1288-1302 ◽  
Author(s):  
L. Shogo Urakawa ◽  
Hiroyasu Hasumi

Abstract Cabbeling effect on the water mass transformation in the Southern Ocean is investigated with the use of an eddy-resolving Southern Ocean model. A significant amount of water is densified by cabbeling: water mass transformation rates are about 4 Sv (1 Sv ≡ 106 m3 s−1) for transformation from surface/thermocline water to Subantarctic Mode Water (SAMW), about 7 Sv for transformation from SAMW to Antarctic Intermediate Water (AAIW), and about 5 Sv for transformation from AAIW to Upper Circumpolar Deep Water. These diapycnal volume transports occur around the Antarctic Circumpolar Current (ACC), where mesoscale eddies are active. The water mass transformation by cabbeling in this study is also characterized by a large amount of densification of Lower Circumpolar Deep Water (LCDW) into Antarctic Bottom Water (AABW) (about 9 Sv). Large diapycnal velocity is found not only along the ACC but also along the coast of Antarctica at the boundary between LCDW and AABW. It is found that about 3 Sv of LCDW is densified into AABW by cabbeling on the continental slopes of Antarctica in this study. This densification is not small compared with observational and numerical estimates on the AABW formation rate, which ranges from 10 to 20 Sv.


2015 ◽  
Vol 8 (8) ◽  
pp. 6611-6668 ◽  
Author(s):  
B. Tranchant ◽  
G. Reffray ◽  
E. Greiner ◽  
D. Nugroho ◽  
A. Koch-Larrouy ◽  
...  

Abstract. INDO12, a 1/12° regional version of the NEMO physical ocean model covering the whole Indonesian EEZ has been developed and is now running every week in the framework of the INDESO project (Infrastructure Development of Space Oceanography) implemented by the Indonesian Ministry of Marine Affairs and Fisheries. The initial hydrographic conditions as well as open boundary conditions are derived from the operational global ocean forecasting system at 1/4° operated by Mercator Ocean. Atmospheric forcing fields (3 hourly ECMWF analyses) are used to force the regional model. INDO12 is also forced by tidal currents and elevations, and by the inverse barometer effect. The turbulent mixing induced by internal tides is taken into account through a specific parameterization. In this study we evaluate the model skill through comparisons with various datasets including outputs of the parent model, climatologies, in situ temperature and salinity measurements, and satellite data. The simulated and altimeter-derived Eddy Kinetic Energy fields display similar patterns and confirm that tides are a dominant forcing in the area. The volume transport of the Indonesian ThroughFlow is in good agreement with the INSTANT current meter estimates while the transport through Luzon Strait is, on average, westward but probably too weak. Significant water mass transformation occurs along the main routes of the Indonesian Throughflow (ITF) and compares well with observations. Vertical mixing is able to erode the South and North Pacific subtropical waters salinity maximum as seen in TS diagrams. Compared to satellite data, surface salinity and temperature fields display marked biases in the South China Sea. Altogether, INDO12 proves to be able to provide a very realistic simulation of the ocean circulation and water mass transformation through the Indonesian Archipelago. A few weaknesses are also detected. Work is on-going to reduce or eliminate these problems in the second INDO12 version.


2012 ◽  
Vol 25 (13) ◽  
pp. 4736-4743 ◽  
Author(s):  
M. Årthun ◽  
T. Eldevik ◽  
L. H. Smedsrud ◽  
Ø. Skagseth ◽  
R. B. Ingvaldsen

Abstract The recent Arctic winter sea ice retreat is most pronounced in the Barents Sea. Using available observations of the Atlantic inflow to the Barents Sea and results from a regional ice–ocean model the authors assess and quantify the role of inflowing heat anomalies on sea ice variability. The interannual variability and longer-term decrease in sea ice area reflect the variability of the Atlantic inflow, both in observations and model simulations. During the last decade (1998–2008) the reduction in annual (July–June) sea ice area was 218 × 103 km2, or close to 50%. This reduction has occurred concurrent with an increase in observed Atlantic heat transport due to both strengthening and warming of the inflow. Modeled interannual variations in sea ice area between 1948 and 2007 are associated with anomalous heat transport (r = −0.63) with a 70 × 103 km2 decrease per 10 TW input of heat. Based on the simulated ocean heat budget it is found that the heat transport into the western Barents Sea sets the boundary of the ice-free Atlantic domain and, hence, the sea ice extent. The regional heat content and heat loss to the atmosphere scale with the area of open ocean as a consequence. Recent sea ice loss is thus largely caused by an increasing “Atlantification” of the Barents Sea.


2020 ◽  
Vol 125 (8) ◽  
Author(s):  
Benjamin I. Barton ◽  
Camille Lique ◽  
Yueng‐Djern Lenn

2009 ◽  
Vol 26 (10) ◽  
pp. 2216-2227 ◽  
Author(s):  
Intissar Keghouche ◽  
Laurent Bertino ◽  
Knut Arild Lisæter

Abstract The problem of parameter estimation is examined for an iceberg drift model of the Barents Sea. The model is forced by atmospheric reanalysis data from ECMWF and ocean and sea ice variables from the Hybrid Coordinate Ocean Model (HYCOM). The model is compared with four observed iceberg trajectories from April to July 1990. The first part of the study focuses on the forces that have the strongest impact on the iceberg trajectories, namely, the oceanic, atmospheric, and Coriolis forces. The oceanic and atmospheric form drag coefficients are optimized for three different iceberg geometries. As the iceberg mass increases, the optimal form drag coefficients increase linearly. A simple balance between the drag forces and the Coriolis force explains this behavior. The ratio between the oceanic and atmospheric form drag coefficients is similar in all experiments, although there are large uncertainties on the iceberg geometries. Two iceberg trajectory simulations have precisions better than 20 km during two months of drift. The trajectory error for the two other simulations is less than 25 km during the first month of drift but increases rapidly to over 70 km afterward. The second part of the study focuses on the sea ice parameterization. The sea ice conditions east of Svalbard in winter 1990 were too mild to exhibit any sensitivity to the sea ice parameters.


2019 ◽  
Vol 47 (4) ◽  
pp. 62-75
Author(s):  
L. L. Demina ◽  
A. S. Solomatina ◽  
G. A. Abyzova

Zooplankton plays a Central role in the transfer of matter and energy from primary producers to high trophic organisms, and zooplankton serves as an essential component of sedimentary material that supplies organic matter to the bottom of marine basins. The paper presents new data on the distribution of a number of heavy metals (Cd, Co, Cr, Cu, Mo, Ni, Pb) and As in the Calanus zooplankton collected in July–August 2017 in the North-Eastern, Eastern and Central parts of the Barents Sea. It is shown that the spatial distribution of metals in zooplankton organisms is influenced by both biotic ecosystem factors associated with bioproductivity and hydrological and geochemical parameters of the habitat (North Polar Front). In the zooplankton of the Arctic water mass to the South-East of Franz Josef Land, there was an increased content of essential heavy metals Cu, Zn and Cr in comparison with the coastal and Atlantic water masses. Zooplankton from the Central part of the sea (Atlantic water mass), where phytoplankton production is reduced, is characterized by the lowest concentrations of most elements (Ni, Cu, Zn, As and Pb). The highest concentrations were found for both essential heavy metals (Zn and Cu) and toxic metalloid As, which may indicate non-selective bioaccumulation of trace elements by copepods.


2019 ◽  
Vol 49 (8) ◽  
pp. 2195-2197 ◽  
Author(s):  
Ryan M. Holmes ◽  
Jan D. Zika ◽  
Matthew H. England

AbstractHochet and Tailleux (2019), in a comment on Holmes et al. (2019), argue that under the incompressible Boussinesq approximation the “sum of the volume fluxes through any kind of control volume must integrate to zero at all times.” They hence argue that the expression in Holmes et al. (2019) for the change in the volume of seawater warmer than a given temperature is inaccurate. Here we clarify what is meant by the term “volume flux” as used in Holmes et al. (2019) and also more generally in the water-mass transformation literature. Specifically, a volume flux across a surface can occur either due to fluid moving through a fixed surface, or due to the surface moving through the fluid. Interpreted in this way, we show using several examples that the statement from Hochet and Tailleux (2019) quoted above does not apply to the control volume considered in Holmes et al. (2019). Hochet and Tailleux (2019) then derive a series of expressions for the water-mass transformation or volume flux across an isotherm in the general, compressible case. In the incompressible Boussinesq limit these expressions reduce to a form (similar to that provided in Holmes et al. 2019) that involves the temperature derivative of the diabatic heat fluxes. Due to this derivative, can be difficult to robustly estimate from ocean model output. This emphasizes one of the advantages of the approach of Holmes et al. (2019), namely, does not appear in the internal heat content budget and is not needed to describe the flow of internal heat content into and around the ocean.


Sign in / Sign up

Export Citation Format

Share Document