DISTRIBUTED SENSOR/ACTUATOR DESIGN FOR PLATES: SPATIAL SHAPE AND SHADING AS DESIGN PARAMETERS

1997 ◽  
Vol 203 (3) ◽  
pp. 473-493 ◽  
Author(s):  
J.M. Sullivan ◽  
J.E. Hubbard, Jr. ◽  
S.E. Burke
Author(s):  
Kevin Eschen ◽  
Julianna Abel

Shape memory alloy (SMA) knitted actuators are a type of functional fabric that uses shape memory alloy wire as an active fiber within a knitted textile. Through intentional design of the SMA knitted actuator geometry, various two- and three-dimensional actuation motions, such as scrolling and contraction [1], can be accomplished. Contractile SMA knitted actuators leverage the unique thermo-mechanical properties of SMA wires by integrating them within the hierarchical knitted structure to achieve large distributed uniaxial contractions and variable stiffness behavior upon thermal actuation. During the knit manufacturing process, the SMA wire is bent into a network of interlacing adjacent loops, storing potential energy within the contractile SMA knitted actuator. Thermal actuation above the wire-specific austenite finish temperature leads to a partial recovery of the bending deformations, resulting in large distributed uniaxial contraction (15–40% actuation contraction observed) of the SMA knitted actuator. The achievable load capacity and %-actuation contraction are dependent on the geometric loop parameters of the contractile SMA knitted actuator. While exact descriptions of the geometric loop parameters exist, a reduction of the geometric complexity is advantageous for high-level contractile SMA knitted actuator design procedures. This paper defines a simple geometric measure, the non-dimensional knit density, and experimentally correlates the contractile SMA knitted actuator performance to this measure. The experimentally demonstrated dependency of relevant actuator metrics on the knit density and the wire diameter, suggests the usability of the simplified geometry definition for a high-level contractile SMA knitted actuator design.


2016 ◽  
Vol 114 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Fionnuala Connolly ◽  
Conor J. Walsh ◽  
Katia Bertoldi

Soft actuators are the components responsible for producing motion in soft robots. Although soft actuators have allowed for a variety of innovative applications, there is a need for design tools that can help to efficiently and systematically design actuators for particular functions. Mathematical modeling of soft actuators is an area that is still in its infancy but has the potential to provide quantitative insights into the response of the actuators. These insights can be used to guide actuator design, thus accelerating the design process. Here, we study fluid-powered fiber-reinforced actuators, because these have previously been shown to be capable of producing a wide range of motions. We present a design strategy that takes a kinematic trajectory as its input and uses analytical modeling based on nonlinear elasticity and optimization to identify the optimal design parameters for an actuator that will follow this trajectory upon pressurization. We experimentally verify our modeling approach, and finally we demonstrate how the strategy works, by designing actuators that replicate the motion of the index finger and thumb.


2013 ◽  
Vol 1 (2) ◽  
pp. 42 ◽  
Author(s):  
Bimo Ananto Pamungkas ◽  
Adian Fatchur Rochim ◽  
Eko Didik Widianto

This paper contains distributed sensor system design for temperature, air humidity, and light intensity monitoring in greenhouse based Arduino Uno board. System contains 2 sensor-actuator nodes, and 1 controller node connected to Ethernet network through Ethernet Shield board. Sensor-actuator node with DHT 11 sensor works for taking environment informations such as temperature, air humidity, and light intensity, runs actuation in the form of emulating LED lights; and communicates with controller node which will process data using serial wire as a communication tool between nodes. Monitoring datas and user control interface is provided by controller node which can be accessed online in web browser. The system ability for monitoring environment in greenhouse and online access of environmental data generates controllable and automatic monitoring and management of plants.


Sign in / Sign up

Export Citation Format

Share Document