Two updated methods for impulse response function estimation

1993 ◽  
Vol 7 (5) ◽  
pp. 451-460 ◽  
Author(s):  
Xu Keqin
Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5413
Author(s):  
Jian-Fu Lin ◽  
Junfang Wang ◽  
Li-Xin Wang ◽  
Siu-seong Law

Impulse response function (IRF) is an ideal structural damage index for the identification of structural damage associated with changes in modal properties. However, IRFs from multiple excitations applied at different degrees-of-freedoms jointly contribute to the dynamic response, and their estimation is often underdetermined. Although some efforts have been devoted to the estimation of IRF for a structure under single excitation, the case under multiple excitations has not been fully investigated yet. The estimation of IRF under multiple excitations is generally an ill-conditioned inverse problem such that an incorrect or non-feasible solution is common, preventing its application to damage detection. This work explores this problem by introducing dimensionality reduction transformation matrices relating two sets of IRFs of a structure with discussions on the performance of the non-unique transformation matrices. Then, the extraction of IRF via wavelet-based and Tikhonov regularization-based methods are compared. Finally, a numerical study with a truss structure is conducted to validate the estimation of the IRFs and to demonstrate their applicability for damage detection under seismic excitations. Both the damage locations and severity are accurately identified, indicating the proposed methodology can enable the IRFs estimation under multiple excitations for successful damage detection.


2020 ◽  
Vol 14 (2) ◽  
pp. 108-113
Author(s):  
Ewa Pawłuszewicz

AbstractThe problem of realisation of linear control systems with the h–difference of Caputo-, Riemann–Liouville- and Grünwald–Letnikov-type fractional vector-order operators is studied. The problem of existing minimal realisation is discussed.


Author(s):  
Mingjie Zhang ◽  
Ole Øiseth

AbstractA convolution-based numerical algorithm is presented for the time-domain analysis of fluidelastic instability in tube arrays, emphasizing in detail some key numerical issues involved in the time-domain simulation. The unit-step and unit-impulse response functions, as two elementary building blocks for the time-domain analysis, are interpreted systematically. An amplitude-dependent unit-step or unit-impulse response function is introduced to capture the main features of the nonlinear fluidelastic (FE) forces. Connections of these elementary functions with conventional frequency-domain unsteady FE force coefficients are discussed to facilitate the identification of model parameters. Due to the lack of a reliable method to directly identify the unit-step or unit-impulse response function, the response function is indirectly identified based on the unsteady FE force coefficients. However, the transient feature captured by the indirectly identified response function may not be consistent with the physical fluid-memory effects. A recursive function is derived for FE force simulation to reduce the computational cost of the convolution operation. Numerical examples of two tube arrays, containing both a single flexible tube and multiple flexible tubes, are provided to validate the fidelity of the time-domain simulation. It is proven that the present time-domain simulation can achieve the same level of accuracy as the frequency-domain simulation based on the unsteady FE force coefficients. The convolution-based time-domain simulation can be used to more accurately evaluate the integrity of tube arrays by considering various nonlinear effects and non-uniform flow conditions. However, the indirectly identified unit-step or unit-impulse response function may fail to capture the underlying discontinuity in the stability curve due to the prespecified expression for fluid-memory effects.


2010 ◽  
Vol 09 (04) ◽  
pp. 387-394 ◽  
Author(s):  
YANG CHEN ◽  
YIWEN SUN ◽  
EMMA PICKWELL-MACPHERSON

In terahertz imaging, deconvolution is often performed to extract the impulse response function of the sample of interest. The inverse filtering process amplifies the noise and in this paper we investigate how we can suppress the noise without over-smoothing and losing useful information. We propose a robust deconvolution process utilizing stationary wavelet shrinkage theory which shows significant improvement over other popular methods such as double Gaussian filtering. We demonstrate the success of our approach on experimental data of water and isopropanol.


2021 ◽  
Vol 8 (1) ◽  
pp. 13-24
Author(s):  
Martinianus Tshimologo Tibinyane ◽  
Teresia Kaulihowa

This paper analyses the effect of the prime interest rate as a monetary policy instrument to stimulate economic growth in Namibia, a small open economy that is constrained by currency board operations. A Vector Autoregressive Model (VAR) was used for the period 1980–2019. The result shows that Namibia’s prime interest rate has no significant effect on economic growth. This finding remains robust and consistent when impulse response function and variance decomposition are employed. The impulse response function indicates a shock on the prime interest rate exhibits an inverse relationship. However, this effect is insignificant in both short and long-run scenarios. The variance decomposition indicates that the prime interest rate has a strongly exogenous impact, implying it has a weak influence on GDP growth. Policy implication indicates that small open economies under currency board operations need to identify different policy responses to circumvent external shocks and addresses their development needs.


2018 ◽  
Vol 34 (6) ◽  
pp. 586-596
Author(s):  
Gautam Dadhich ◽  
Shweta Sharma ◽  
Mihir Rambhia ◽  
Aloke K. Mathur ◽  
P. R. Patel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document