Adenosine-Induced Caspase Activity in N1E-115 Cells

Author(s):  
S. Mariette Schrier ◽  
Ad P. Ijzerman ◽  
Gerard J. Mulder ◽  
J. Fred Nagelkerke
Keyword(s):  
2021 ◽  
Vol 10 (8) ◽  
pp. 1661
Author(s):  
Andrés Ramírez-López ◽  
María Teresa Álvarez Román ◽  
Elena Monzón Manzano ◽  
Paula Acuña ◽  
Elena G. Arias-Salgado ◽  
...  

Loss of sialic acid from the carbohydrate side chains of platelet glycoproteins can affect platelet clearance, a proposed mechanism involved in the etiopathogenesis of immune thrombocytopaenia (ITP). We aimed to assess whether changes in platelet glycosylation in patients with ITP affected platelet counts, function, and apoptosis. This observational, prospective, and transversal study included 82 patients with chronic primary ITP and 115 healthy controls. We measured platelet activation markers and assayed platelet glycosylation and caspase activity, analysing samples using flow cytometry. Platelets from patients with ITP with a platelet count <30 × 103/µL presented less sialic acid. Levels of α1,6-fucose (a glycan residue that can directly regulate antibody-dependent cellular cytotoxicity) and α-mannose (which can be recognised by mannose-binding-lectin and activate the complement pathway) were increased in the platelets from these patients. Platelet surface exposure of other glycoside residues due to sialic acid loss inversely correlated with platelet count and the ability to be activated. Moreover, loss of sialic acid induced the ingestion of platelets by human hepatome HepG2 cells. Changes in glycoside composition of glycoproteins on the platelets’ surface impaired their functional capacity and increased their apoptosis. These changes in platelet glycoside residues appeared to be related to ITP severity.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2003
Author(s):  
Samet Kocabey ◽  
Aslihan Ekim Kocabey ◽  
Roger Schneiter ◽  
Curzio Rüegg

DNA nanotechnology offers to build nanoscale structures with defined chemistries to precisely position biomolecules or drugs for selective cell targeting and drug delivery. Owing to the negatively charged nature of DNA, for delivery purposes, DNA is frequently conjugated with hydrophobic moieties, positively charged polymers/peptides and cell surface receptor-recognizing molecules or antibodies. Here, we designed and assembled cholesterol-modified DNA nanotubes to interact with cancer cells and conjugated them with cytochrome c to induce cancer cell apoptosis. By flow cytometry and confocal microscopy, we observed that DNA nanotubes efficiently bound to the plasma membrane as a function of the number of conjugated cholesterol moieties. The complex was taken up by the cells and localized to the endosomal compartment. Cholesterol-modified DNA nanotubes, but not unmodified ones, increased membrane permeability, caspase activation and cell death. Irreversible inhibition of caspase activity with a caspase inhibitor, however, only partially prevented cell death. Cytochrome c-conjugated DNA nanotubes were also efficiently taken up but did not increase the rate of cell death. These results demonstrate that cholesterol-modified DNA nanotubes induce cancer cell death associated with increased cell membrane permeability and are only partially dependent on caspase activity, consistent with a combined form of apoptotic and necrotic cell death. DNA nanotubes may be further developed as primary cytotoxic agents, or drug delivery vehicles, through cholesterol-mediated cellular membrane interactions and uptake.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 402
Author(s):  
Dawid Przystupski ◽  
Agata Górska ◽  
Olga Michel ◽  
Agnieszka Podwin ◽  
Patrycja Śniadek ◽  
...  

The dynamic development of the space industry makes space flights more accessible and opens up new opportunities for biological research to better understand cell physiology under real microgravity. Whereas specialized studies in space remain out of our reach, preliminary experiments can be performed on Earth under simulated microgravity (sµg). Based on this concept, we used a 3D-clinostat (3D-C) to analyze the effect of short exposure to sµg on human keratinocytes HaCaT and melanoma cells A375 cultured on all-glass Lab-on-a-Chip (LOC). Our preliminary studies included viability evaluation, mitochondrial and caspase activity, and proliferation assay, enabling us to determine the effect of sµg on human cells. By comparing the results concerning cells cultured on LOCs and standard culture dishes, we were able to confirm the biocompatibility of all-glass LOCs and their potential application in microgravity research on selected human cell lines. Our studies revealed that HaCaT and A375 cells are susceptible to simulated microgravity; however, we observed an increased caspase activity and a decrease of proliferation in cancer cells cultured on LOCs in comparison to standard cell cultures. These results are an excellent basis to conduct further research on the possible application of LOCs systems in cancer research in space.


1998 ◽  
Vol 332 (3) ◽  
pp. 661-665 ◽  
Author(s):  
Claudio STEFANELLI ◽  
Francesca BONAVITA ◽  
Ivana STANIC ◽  
Carla PIGNATTI ◽  
Giovanna FARRUGGIA ◽  
...  

Recent investigations have indicated the involvement of proteasome in programmed cell death. The present studies show that although peptide aldehyde inhibitors of proteasome are by themselves weak inducers of apoptosis, they inhibit the apoptotic effect of the anticancer drug etoposide in rat thymocytes. Acetyl-Leu-Leu-norvalinal (LLnV-al) and other related peptide aldehydes inhibited the increase in caspase activity and DNA fragmentation that followed treatment with etoposide and their effect was related to their potency as proteasome inhibitors. To inhibit etoposide-induced apoptosis, LLnV-al must be present within 3 h of treatment with etoposide, in the same way as the inhibitor of protein synthesis cycloheximide must be. Etoposide caused a rapid accumulation of p53 protein that was not inhibited by LLnV-al, which was also a strong inducer of p53. Peptide aldehydes were also weak activators of caspase activity, suggesting that the same mechanism, i.e. the blocking of proteasome function, both triggers apoptosis and inhibits the effect of etoposide. These results are consistent with a model in which proteasome is selectively involved in the pathway used by etoposide to induce cell suicide.


2004 ◽  
Vol 31 (1) ◽  
pp. 146-150 ◽  
Author(s):  
Jose Irazuzta ◽  
Robert K. Pretzlaff ◽  
Gabrielle deCourten-Myers ◽  
Frank Zemlan ◽  
Basilia Zingarelli

2007 ◽  
Vol 292 (5) ◽  
pp. R2039-R2047 ◽  
Author(s):  
Michael A. Menze ◽  
Steven C. Hand

Evaluation of apoptotic processes downstream of the mitochondrion reveals caspase-9- and low levels of caspase-3-like activities in partly purified extracts of Artemia franciscana embryos. However, in contrast to experiments with extracts of human hepatoma cells, cytochrome c fails to activate caspase-3 or -9 in extracts from A. franciscana. Furthermore, caspase-9 activity is sensitive to exogenous calcium. The addition of 5 mM calcium leads to a 4.86 ± 0.19 fold (SD) ( n = 3) increase in activity, which is fully prevented with 150 mM KCl. As with mammalian systems, high ATP (>1.25 mM) suppresses caspase activity in A. franciscana extracts. A strong inhibition of caspase-9 activity was also found by GTP. Comparison of GTP-induced inhibition of caspase-9 at 0 and 2.5 mM MgCl2 indicates that free (nonchelated) GTP is likely to be the inhibitory form. The strongest inhibition among all nucleotides tested was with ADP. Inhibition by ADP in the presence of Mg2+ is 60-fold greater in diapause embryos than in postdiapause embryos. Because ADP does not change appreciably in concentration between the two physiological states, it is likely that this differential sensitivity to Mg2+-ADP is important in avoiding caspase activation during diapause. Finally, mixtures of nucleotides that mimic physiological concentrations in postdiapause and diapause states underscore the depressive action of these regulators on caspase-9 during diapause. Our biochemical characterization of caspase-like activity in A. franciscana extracts reveals that multiple mechanisms are in place to reduce the probability of apoptosis under conditions of energy limitation in this embryo.


Sign in / Sign up

Export Citation Format

Share Document