A Measurement Force Estimation Method of Tapping Stylus

Author(s):  
Takahashi Ken ◽  
Hayase Masanori ◽  
Hatsuzawa Takeshi
2012 ◽  
Vol 12 (1) ◽  
pp. 205-215 ◽  
Author(s):  
Hyuck Min Kweon ◽  
Oh Kyun Kwon ◽  
Yu Sik Han ◽  
Kang Hun Yoon

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Yijun Li ◽  
Taehyun Shim ◽  
Dexin Wang ◽  
Timothy Offerle

The rack force is valuable information for a vehicle dynamics control system, as it relates closely to the road conditions and steering feel. Since there is no direct measurement of rack force in current steering systems, various rack force estimation methods have been proposed to obtain the rack force information. In order to get an accurate rack force estimate, it is important to have knowledge of the steering system friction. However, it is hard to have an accurate value of friction, as it is subject to variation due to operation conditions and material wear. Especially for the widely used column-assisted electric power steering (C-EPAS) system, the load-dependent characteristic of its worm gear friction has a significant effect on rack force estimation. In this paper, a rack force estimation method using a Kalman filter and a load-dependent friction estimation algorithm is introduced, and the effect of C-EPAS friction on rack force estimator performance is investigated. Unlike other rack force estimation methods, which assume that friction is known a priori, the proposed system uses a load-dependent friction estimation algorithm to determine accurate friction information in the steering system, and then a rack force is estimated using the relationship between steering torque and angle. The effectiveness of this proposed method is verified by carsim/simulink cosimulation.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 47 ◽  
Author(s):  
Joo-Young Ryu ◽  
Thanh-Canh Huynh ◽  
Jeong-Tae Kim

Force changes in axially loaded members can be monitored by quantifying variations in impedance signatures. However, statistical damage metrics, which are not physically related to the axial load, often lead to difficulties in accurately estimating the amount of axial force changes. Inspired by the wearable technology, this study proposes a novel wearable piezoelectric interface that can be used to monitor and quantitatively estimate the force changes in axial members. Firstly, an impedance-based force estimation method was developed for axially loaded members. The estimation was based on the relationship between the axial force level and the peak frequencies of impedance signatures, which were obtained from the wearable piezoelectric interface. The estimation of the load transfer capability from the axial member to the wearable interface was found to be an important factor for the accurate prediction of axial force. Secondly, a prototype of the wearable piezoelectric interface was designed to be easily fitted into existing axial members. Finally, the feasibility of the proposed technique was established by assessing tension force changes in a numerical model of an axially loaded cylindrical member and a lab-scale model of a prestressed cable structure.


2018 ◽  
Vol 30 (1) ◽  
pp. 138-144 ◽  
Author(s):  
Yuuki Shiozawa ◽  
◽  
Hiroshi Mouri

To control vehicle behavior, it is essential to estimate tire force accurately at all times. However, it is currently difficult to detect tire performance degradation before the deterioration of vehicle dynamics in real time because tire force estimation is usually conducted by comparing the observed vehicle motion with the onboard vehicle-model motion baseline reference. Such conventional estimators do not perform well if there is a significant difference between the vehicle and the model behavior. The lack of technology to easily predict tire forces and road surface friction is concerning. In this paper, a new tire state estimation method based on tire force characteristics is proposed.


Author(s):  
Baoliang Zhao ◽  
Carl A. Nelson

Robotic minimally invasive surgery has achieved success in various procedures; however, the lack of haptic feedback is considered by some to be a limiting factor. The typical method to acquire tool-tissue reaction forces is attaching force sensors on surgical tools, but this complicates sterilization and makes the tool bulky. This paper explores the feasibility of using motor current to estimate tool-tissue forces, and demonstrates acceptable results in terms of time delay and accuracy. This sensorless force estimation method sheds new light on the possibility of equipping existing robotic surgical systems with haptic interfaces that require no sensors and are compatible with existing sterilization methods.


2001 ◽  
Vol 67 (4) ◽  
pp. 665-670
Author(s):  
Ken TAKAHASHI ◽  
Masanori HAYASE ◽  
Takeshi HATSUZAWA

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fan Feng ◽  
Wuzhou Hong ◽  
Le Xie

AbstractAlthough tendon-driven continuum manipulators have been extensively researched, how to realize tip contact force sensing in a more general and efficient way without increasing the diameter is still a challenge. Rather than use a complex modeling approach, this paper proposes a general tip contact force-sensing method based on a recurrent neural network that takes the tendons’ position and tension as the input of a recurrent neural network and the tip contact force of the continuum manipulator as the output and fits this static model by means of machine learning so that it may be used as a real-time contact force estimator. We also designed and built a corresponding three-degree-of-freedom contact force data acquisition platform based on the structure of a continuum manipulator designed in our previous studies. After obtaining training data, we built and compared the performances of a multi-layer perceptron-based contact force estimator as a baseline and three typical recurrent neural network-based contact force estimators through TensorFlow framework to verify the feasibility of this method. We also proposed a manually decoupled sub-estimators algorithm and evaluated the advantages and disadvantages of those two methods.


Sign in / Sign up

Export Citation Format

Share Document