2D FEM Analysis of 3D Magnetic Structures by Using Topological Transformations. Application to the Design of a Micro-Relay

Author(s):  
J. Roger-Folch ◽  
E. Gómez ◽  
M. Riera ◽  
V. Lázaro
1994 ◽  
Vol 144 ◽  
pp. 365-367
Author(s):  
E. V. Kononovich ◽  
O. B. Smirnova ◽  
P. Heinzel ◽  
P. Kotrč

AbstractThe Hα filtergrams obtained at Tjan-Shan High Altitude Observatory near Alma-Ata (Moscow University Station) were measured in order to specify the bright rims contrast at different points along the line profile (0.0; ± 0.25; ± 0.5; ± 0.75 and ± 1.0 Å). The mean contrast value in the line center is about 25 percent. The bright rims interpretation as the bases of magnetic structures supporting the filaments is suggested.


Author(s):  
D. J. Barber ◽  
R. G. Evans

Manganese (II) oxide, MnO, in common with CoO, NiO and FeO, possesses the NaCl structure and shows antiferromagnetism below its Neel point, Tn∼ 122 K. However, the defect chemistry of the four oxides is different and the magnetic structures are not identical. The non-stoichiometry in MnO2 small (∼2%) and below the Tn the spins lie in (111) planes. Previous work reported observations of magnetic features in CoO and NiO. The aim of our work was to find explanations for certain resonance results on antiferromagnetic MnO.Foils of single crystal MnO were prepared from shaped discs by dissolution in a mixture of HCl and HNO3. Optical microscopy revealed that the etch-pitted foils contained cruciform-shaped precipitates, often thick and proud of the surface but red-colored when optically transparent (MnO is green). Electron diffraction and probe microanalysis indicated that the precipitates were Mn2O3, in contrast with recent findings of Co3O4 in CoO.


1999 ◽  
Vol 169 (8) ◽  
pp. 922 ◽  
Author(s):  
Aleksandr I. Morozov ◽  
Aleksandr S. Sigov

2009 ◽  
Vol PIER 98 ◽  
pp. 407-423 ◽  
Author(s):  
Hassan Moradi ◽  
Ebrahim Afjei ◽  
Faramarz Faghihi

2001 ◽  
Vol 84 (9) ◽  
pp. 20-27 ◽  
Author(s):  
Aleš Nevařil ◽  
Jiří Kytýr

2017 ◽  
Vol 53 (2) ◽  
pp. 329-340 ◽  
Author(s):  
A. Alemany ◽  
R. Forcinetti ◽  
F. Masson ◽  
A. Montisci
Keyword(s):  

Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2921 ◽  
Author(s):  
Wei Huang ◽  
Yujiang Wang ◽  
Shicheng Wei ◽  
Bo Wang ◽  
Yi Liang ◽  
...  

Hollow magnetic structures have great potential to be used in the microwave absorbing field. Herein, Fe3O4 hollow spheres with different levels of hollowness were synthesized by the hydrothermal method under Ostwald ripening effect. In addition to their microstructures, the microwave absorption properties of such spheres were investigated. The results show that the grain size and hollowness of Fe3O4 hollow spheres both increase as the reaction time increases. With increasing hollowness, the attenuation ability of electromagnetic wave of Fe3O4 spheres increases first and then decreases, finally increases sharply after the spheres break down. Samples with strong attenuation ability can achieve good impedance matching, which it does preferentially as the absorber thickness increases. Fe3O4 hollow spheres show the best microwave absorption performance when the reaction time is 24 h. The minimum reflection loss (RL (min)) can reach −40 dB, while the thickness is only 3.2 mm.


2019 ◽  
Vol 7 (21) ◽  
pp. 6426-6432 ◽  
Author(s):  
Denis S. Kolchanov ◽  
Vladislav Slabov ◽  
Kirill Keller ◽  
Ekaterina Sergeeva ◽  
Mikhail V. Zhukov ◽  
...  

The article describes an easy-to-implement and print-ready composition for inkjet printing of magnetic structures, which can be used for security printing, coding, and marking, magnetic device fabrication or creation of micro-antennas.


ChemInform ◽  
2016 ◽  
Vol 47 (17) ◽  
Author(s):  
Edward J. T. Salter ◽  
Jack N. Blandy ◽  
Simon J. Clarke

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3927
Author(s):  
Joanna Taczała ◽  
Katarzyna Rak ◽  
Jacek Sawicki ◽  
Michał Krasowski

The creation of acrylic dentures involves many stages. One of them is to prepare the surfaces of artificial teeth for connection with the denture plates. The teeth could be rubbed with a chemical reagent, the surface could be developed, or retention hooks could be created. Preparation of the surface is used to improve the bond between the teeth and the plate. Choosing the right combination affects the length of denture use. This work focuses on a numerical analysis of grooving. The purpose of this article is to select the shape and size of the grooves that would most affect the quality of the bond strength. Two types of grooves in different dimensional configurations were analyzed. The variables were groove depth and width, and the distance between the grooves. Finally, 24 configurations were obtained. Models were analyzed in terms of their angular position to the loading force. Finite element method (FEM) analysis was performed on the 3D geometry created, which consisted of two polymer bodies under the shear process. The smallest values of the stresses and strains were characterized by a sample with parallel grooves with the grooving dimensions width 0.20 mm, thickness 0.10 mm, and distance between the grooves 5.00 mm, placed at an angle of 90°. The best dimensions from the parallel (III) and cross (#) grooves were compared experimentally. Specimens with grooving III were not damaged in the shear test. The research shows that the shape of the groove affects the distribution of stresses and strains. Combining the selected method with an adequately selected chemical reagent can significantly increase the strength of the connection.


Sign in / Sign up

Export Citation Format

Share Document