Diffusion, mass loss and accretion in stars

Author(s):  
Georges Michaud
Keyword(s):  
1993 ◽  
Vol 138 ◽  
pp. 474-489
Author(s):  
Paul Charbonneau

AbstractThe role played by rotationally-induced mixing in the diffusion-based models for non-magnetic chemically peculiar stars is investigated. This paper focuses on one specific rotationally controlled mixing mechanism, namely thermally-driven meridional circulation. Its effects on the time evolution of chemical abundances are illustrated by means of three specific examples. The first two concern the diffusion model for FmAm stars, where it is shown that while circulation has a determining influence on the settling of Helium, it has no significant effect on the diffusion of heavier metals once the He superficial convection zone has disappeared. The third example is concerned with the diffusion/mass loss model for λBootis stars. It is shown that the inclusion of circulation prevents the appearance of generalized underabundances at any epoch of the evolution, indicating that the diffusion/mass loss model for these objects must be abandoned.


1993 ◽  
Vol 138 ◽  
pp. 458-472
Author(s):  
J. Babel

AbstractProgress made in spectroscopy and in the diffusion theory permits now to make severe comparisons, based on line profiles, between theory and observation.We first review transport processes which are present in the atmospheric layers of Ap stars and discuss their relative importance. We then show that mass loss could play a key role for the creation of abundance maps. A mass loss model is proposed for 53 Cam and is compared, by spectrum synthesis, with visible and IUE high resolutions observations. The model accounts well for the line profiles of several elements with an exception for Ti. Furthermore, the abundance stratification predicted by this model gives close agreement with the large variation of the abundances of Cr and Fe found between the visible and UV domains. The diffusion-mass loss model finally permits to give a simple interpretation of the peculiar Ca II K lines observed in many Ap SrCrEu stars and in particular in 53 Cam, β CrB and HD 191742.


1993 ◽  
Vol 137 ◽  
pp. 275-277
Author(s):  
J. Babel

AbstractThe mechanism and properties of mass loss are poorly known for Ap stars. Present upper limits on the mass loss rate are of 10−10 M⊙yr−1, a value which does not permit any element separation. Abundance maps could be a very powerful tool to constrain the mass loss rate and the wind geometry of Ap stars, as surface abundances are sensitive to rates as small as 10−15 M⊙yr−1. We here propose a diffusion-mass loss model for 53 Cam and compute abundance distributions in the photosphere of 53 Cam. The mass loss geometry is determined from the Ca II K line profile and its time variation. We obtain that the diffusion-mass loss model explains many spectral features of 53 Cam, both in the UV and visible domains.


1993 ◽  
Vol 137 ◽  
pp. 174-176 ◽  
Author(s):  
Constantine P. Deliyannis ◽  
M.H. Pinsonneault

AbstractStandard stellar evolution predicts that F stars should retain their initial surface lithium (Li) abundance because their convection zones are too shallow to destroy it at their base. Yet, observations reveal a severe Li depletion (the “Boesgaard Gap”), perhaps by as much as about two orders of magnitude, in a narrow Teff range. Several physical mechanisms, not usually included in stellar evolution calculations, have been proposed to account for this Li deficiency. These include diffusion, mass loss, meridional circulation, and rotationally-induced mixing driven by angular momentum loss. Identifying which of these (if any) might really be at work is not only of vital interest to stellar evolution, but may also have serious implications elsewhere (e.g. cosmology, Deliyannis et al. 1991). We bring attention to beryllium (Be) observations in F stars, which are crucial for discriminating between scenarios. Particularly important is the star 110 Her, which is depleted in Be by about a factor of 5 -10, but still has a detectable Li abundance (depleted by a factor of 100 - 200). Depleting surface Be without having depleted nearly all of the surface Li requires specific circumstances; we discuss how this depletion property severely constrains or eliminates most of the proposed mechanisms. One mechanism, rotationally-induced mixing, predicts relative depletions for these elements that agree well with what is observed.


2008 ◽  
Vol 4 (S252) ◽  
pp. 289-295
Author(s):  
M. Vick ◽  
G. Michaud ◽  
O. Richard

AbstractAlthough chemical separation is generally accepted as the main physical process responsible for the anomalous surface abundances of AmFm stars, its exact behavior within the interior of these stars is still uncertain. We will explore two hydrodynamical processes which could compete with atomic diffusion: mass loss and turbulence. We will also discuss the extent to which separation occurs immediately below the surface convection zone as well as the extent to which separation occurs below 200,000 K. To do so, self-consistent stellar models with mass loss and turbulence where calculated using the Montreal stellar evolution code and compared to observations of A and F stars. It is shown that to the precision of observations available for F stars, a mass loss rate of 2×10−14M⊙· yr−1, is compatible with observations and that no turbulence is then required.


Author(s):  
M.K. Lamvik ◽  
D.A. Kopf ◽  
S.D. Davilla ◽  
J.D. Robertson

Last year we reported1 that there is a striking reduction in the rate of mass loss when a specimen is observed at liquid helium temperature. It is important to determine whether liquid helium temperature is significantly better than liquid nitrogen temperature. This requires a good understanding of mass loss effects in cold stages around 100K.


Author(s):  
M.E. Cantino ◽  
M.K. Goddard ◽  
L.E. Wilkinson ◽  
D.E. Johnson

Quantification in biological x-ray microanalysis depends on accurate evaluation of mass loss. Although several studies have addressed the problem of electron beam induced mass loss from organic samples (eg., 1,2). uncertainty persists as to the dose dependence, the extent of loss, the elemental constituents affected, and the variation in loss for different materials and tissues. in the work described here, we used x-ray counting rate changes to measure mass loss in albumin (used as a quantification standard), salivary gland, and muscle.In order to measure mass loss at low doses (10-4 coul/cm2 ) large samples were needed. While freeze-dried salivary gland sections of the required dimensions were available, muscle sections of this size were difficult to obtain. To simulate large muscle sections, frog or rat muscle homogenate was injected between formvar films which were then stretched over slot grids and freeze-dried. Albumin samples were prepared by a similar procedure. using a solution of bovine serum albumin in water. Samples were irradiated in the STEM mode of a JEOL 100C.


Author(s):  
P.E. Champness ◽  
R.W. Devenish

It has long been recognised that silicates can suffer extensive beam damage in electron-beam instruments. The predominant damage mechanism is radiolysis. For instance, damage in quartz, SiO2, results in loss of structural order without mass loss whereas feldspars (framework silicates containing Ca, Na, K) suffer loss of structural order with accompanying mass loss. In the latter case, the alkali ions, particularly Na, are found to migrate away from the area of the beam. The aim of the present study was to investigate the loss of various elements from the common silicate structures during electron irradiation at 100 kV over a range of current densities of 104 - 109 A m−2. (The current density is defined in terms of 50% of total current in the FWHM probe). The silicates so far ivestigated are:- olivine [(Mg, Fe)SiO4], a structure that has isolated Si-O tetrahedra, garnet [(Mg, Ca, Fe)3Al2Si3AO12 another silicate with isolated tetrahedra, pyroxene [-Ca(Mg, Fe)Si2O6 a single-chain silicate; mica [margarite, -Ca2Al4Si4Al4O2O(OH)4], a sheet silicate, and plagioclase feldspar [-NaCaAl3Si5O16]. Ion- thinned samples of each mineral were examined in a VG Microscopes UHV HB501 field- emission STEM. The beam current used was typically - 0.5 nA and the current density was varied by defocussing the electron probe. Energy-dispersive X-ray spectra were collected every 10 seconds for a total of 200 seconds using a Link Systems windowless detector. The thickness of the samples in the area of analysis was normally 50-150 nm.


Sign in / Sign up

Export Citation Format

Share Document