scholarly journals Future Cell and Gene Therapy for Osteoarthritis (OA): Potential for Using Mammalian Protein Production Platforms, Irradiated and Transfected Protein Packaging Cell Lines for Over-Production of Therapeutic Proteins and Growth Factors

Author(s):  
Ali Mobasheri
Biology ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 330
Author(s):  
Ali Mobasheri ◽  
Heonsik Choi ◽  
Pablo Martín-Vasallo

This review article focuses on the current state-of-the-art cellular and molecular biotechnology for the over-production of clinically relevant therapeutic and anabolic growth factors. We discuss how the currently available tools and emerging technologies can be used for the regenerative treatment of osteoarthritis (OA). Transfected protein packaging cell lines such as GP-293 cells may be used as “cellular factories” for large-scale production of therapeutic proteins and pro-anabolic growth factors, particularly in the context of cartilage regeneration. However, when irradiated with gamma or x-rays, these cells lose their capacity for replication, which makes them safe for use as a live cell component of intra-articular injections. This innovation is already here, in the form of TissueGene-C, a new biological drug that consists of normal allogeneic primary chondrocytes combined with transduced GP2-293 cells that overexpress the growth factor transforming growth factor β1 (TGF-β1). TissueGene-C has revolutionized the concept of cell therapy, allowing drug companies to develop live cells as biological drug delivery systems for direct intra-articular injection of growth factors whose half-lives are in the order of minutes. Therefore, in this paper, we discuss the potential for new innovations in regenerative medicine for degenerative diseases of synovial joints using mammalian protein production platforms, specifically protein packaging cell lines, for over-producing growth factors for cartilage tissue regeneration and give recent examples. Mammalian protein production platforms that incorporate protein packaging eukaryotic cell lines are superior to prokaryotic bacterial expression systems and are likely to have a significant impact on the development of new humanized biological growth factor therapies for treating focal cartilage defects and more generally for the treatment of degenerative joint diseases such as OA, especially when injected directly into the joint.


Author(s):  
Ali Mobasheri ◽  
Pablo Martín-Vasallo

This article focuses on the current state-of-the-art in the area of cellular and molecular biotechnology for over-production of clinically relevant therapeutic growth factors and how the technology can be used for the treatment of osteoarthritis (OA). Transfected and irradiated protein packaging cell lines may be used as “cellular factories” for large-scale production of therapeutic proteins and pro-anabolic growth factors, particularly in the context of cartilage matrix regeneration. We discuss the potential for new innovations in regenerative medicine for degenerative diseases of synovial joints using mammalian protein production platforms, specifically protein packaging cell lines, for over-producing growth factors for cartilage tissue regeneration and give recent examples. Mammalian protein production platforms that incorporate protein packaging cell lines are superior to bacterial expression systems and are likely to have a significant impact on the development of new biological therapies for treating focal cartilage defects and more generally for the treatment of degenerative joint diseases such as OA.


Author(s):  
Ali Mobasheri ◽  
Heonsik Choi ◽  
Pablo Martín-Vasallo

This review article focuses on the current state-of-the-art in the area of cellular and molecular biotechnology for over-production of clinically relevant therapeutic and anabolic growth factors. We discuss how the currently available tools and emerging technologies can be used for the regenerative treatment of osteoarthritis (OA). Transfected protein packaging cell lines such as GP-293 cells may be used as “cellular factories” for large-scale production of therapeutic proteins and pro-anabolic growth factors, particularly in the context of cartilage regeneration. However, when irradiated with gamma or x-rays, these cells lose their capacity for replication, which actually makes them safe for use as a live cell component of intra-articular injections. This innovation is already here, in the form of TissueGene-C, a new biological drug which consists of normal allogeneic primary chondrocytes combined with transduced GP2-293 cells that overexpress the growth factor transforming growth factor β1 (TGF-β1). TissueGene-C has revolutionized the concept of cell therapy, allowing drug companies to develop live cells as biological drug delivery systems for direct intra-articular injection of growth factors whose half-lives are in the order of minutes. Therefore, in this paper, we discuss the potential for new innovations in regenerative medicine for degenerative diseases of synovial joints using mammalian protein production platforms, specifically protein packaging cell lines, for over-producing growth factors for cartilage tissue regeneration and give recent examples. Mammalian protein production platforms that incorporate protein packaging eukaryotic cell lines are superior to prokaryotic bacterial expression systems and are likely to have a significant impact on the development of new humanized biological growth factor therapies for treating focal cartilage defects and more generally for the treatment of degenerative joint diseases such as OA, especially when injected directly into the joint.


2011 ◽  
Vol 77 (9) ◽  
pp. 3154-3156 ◽  
Author(s):  
Vasiliki Panagiotou ◽  
Kerry Routenberg Love ◽  
Bo Jiang ◽  
Juergen Nett ◽  
Terrance Stadheim ◽  
...  

ABSTRACTThe selection of highly productive cell lines remains a key step for manufacturing therapeutic proteins. Microengraving was used to screen chemically mutagenized populations ofPichia pastorisfor increased production of an Fc fragment. Clones retrieved following three rounds of mutagenesis yielded titers 2.65-fold greater than those of the parental strain.


2003 ◽  
Vol 4 (7) ◽  
pp. 575-585 ◽  
Author(s):  
A. Musaro ◽  
N. Rosenthal

1988 ◽  
Vol 62 (3) ◽  
pp. 1008-1015 ◽  
Author(s):  
A W Stoker ◽  
M J Bissell

2015 ◽  
Vol 23 ◽  
pp. S167
Author(s):  
Hiroki Saito ◽  
Koichi Kitagawa ◽  
Risa Yamasaki ◽  
Nami Katai ◽  
Naoya Morishita ◽  
...  

2021 ◽  
pp. 1-7
Author(s):  
Sarah Jarrin ◽  
Abrar Hakami ◽  
Ben Newland ◽  
Eilís Dowd

Despite decades of research and billions in global investment, there remains no preventative or curative treatment for any neurodegenerative condition, including Parkinson’s disease (PD). Arguably, the most promising approach for neuroprotection and neurorestoration in PD is using growth factors which can promote the growth and survival of degenerating neurons. However, although neurotrophin therapy may seem like the ideal approach for neurodegenerative disease, the use of growth factors as drugs presents major challenges because of their protein structure which creates serious hurdles related to accessing the brain and specific targeting of affected brain regions. To address these challenges, several different delivery systems have been developed, and two major approaches—direct infusion of the growth factor protein into the target brain region and in vivo gene therapy—have progressed to clinical trials in patients with PD. In addition to these clinically evaluated approaches, a range of other delivery methods are in various degrees of development, each with their own unique potential. This review will give a short overview of some of these alternative delivery systems, with a focus on ex vivo gene therapy and biomaterial-aided protein and gene delivery, and will provide some perspectives on their potential for clinical development and translation.


Sign in / Sign up

Export Citation Format

Share Document