scholarly journals Over-production of Therapeutic Growth Factors for Articular Cartilage Regeneration by Protein Production Platforms and Protein Packaging Cell Lines

Author(s):  
Ali Mobasheri ◽  
Heonsik Choi ◽  
Pablo Martín-Vasallo

This review article focuses on the current state-of-the-art in the area of cellular and molecular biotechnology for over-production of clinically relevant therapeutic and anabolic growth factors. We discuss how the currently available tools and emerging technologies can be used for the regenerative treatment of osteoarthritis (OA). Transfected protein packaging cell lines such as GP-293 cells may be used as “cellular factories” for large-scale production of therapeutic proteins and pro-anabolic growth factors, particularly in the context of cartilage regeneration. However, when irradiated with gamma or x-rays, these cells lose their capacity for replication, which actually makes them safe for use as a live cell component of intra-articular injections. This innovation is already here, in the form of TissueGene-C, a new biological drug which consists of normal allogeneic primary chondrocytes combined with transduced GP2-293 cells that overexpress the growth factor transforming growth factor β1 (TGF-β1). TissueGene-C has revolutionized the concept of cell therapy, allowing drug companies to develop live cells as biological drug delivery systems for direct intra-articular injection of growth factors whose half-lives are in the order of minutes. Therefore, in this paper, we discuss the potential for new innovations in regenerative medicine for degenerative diseases of synovial joints using mammalian protein production platforms, specifically protein packaging cell lines, for over-producing growth factors for cartilage tissue regeneration and give recent examples. Mammalian protein production platforms that incorporate protein packaging eukaryotic cell lines are superior to prokaryotic bacterial expression systems and are likely to have a significant impact on the development of new humanized biological growth factor therapies for treating focal cartilage defects and more generally for the treatment of degenerative joint diseases such as OA, especially when injected directly into the joint.

Biology ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 330
Author(s):  
Ali Mobasheri ◽  
Heonsik Choi ◽  
Pablo Martín-Vasallo

This review article focuses on the current state-of-the-art cellular and molecular biotechnology for the over-production of clinically relevant therapeutic and anabolic growth factors. We discuss how the currently available tools and emerging technologies can be used for the regenerative treatment of osteoarthritis (OA). Transfected protein packaging cell lines such as GP-293 cells may be used as “cellular factories” for large-scale production of therapeutic proteins and pro-anabolic growth factors, particularly in the context of cartilage regeneration. However, when irradiated with gamma or x-rays, these cells lose their capacity for replication, which makes them safe for use as a live cell component of intra-articular injections. This innovation is already here, in the form of TissueGene-C, a new biological drug that consists of normal allogeneic primary chondrocytes combined with transduced GP2-293 cells that overexpress the growth factor transforming growth factor β1 (TGF-β1). TissueGene-C has revolutionized the concept of cell therapy, allowing drug companies to develop live cells as biological drug delivery systems for direct intra-articular injection of growth factors whose half-lives are in the order of minutes. Therefore, in this paper, we discuss the potential for new innovations in regenerative medicine for degenerative diseases of synovial joints using mammalian protein production platforms, specifically protein packaging cell lines, for over-producing growth factors for cartilage tissue regeneration and give recent examples. Mammalian protein production platforms that incorporate protein packaging eukaryotic cell lines are superior to prokaryotic bacterial expression systems and are likely to have a significant impact on the development of new humanized biological growth factor therapies for treating focal cartilage defects and more generally for the treatment of degenerative joint diseases such as OA, especially when injected directly into the joint.


Author(s):  
Ali Mobasheri ◽  
Pablo Martín-Vasallo

This article focuses on the current state-of-the-art in the area of cellular and molecular biotechnology for over-production of clinically relevant therapeutic growth factors and how the technology can be used for the treatment of osteoarthritis (OA). Transfected and irradiated protein packaging cell lines may be used as “cellular factories” for large-scale production of therapeutic proteins and pro-anabolic growth factors, particularly in the context of cartilage matrix regeneration. We discuss the potential for new innovations in regenerative medicine for degenerative diseases of synovial joints using mammalian protein production platforms, specifically protein packaging cell lines, for over-producing growth factors for cartilage tissue regeneration and give recent examples. Mammalian protein production platforms that incorporate protein packaging cell lines are superior to bacterial expression systems and are likely to have a significant impact on the development of new biological therapies for treating focal cartilage defects and more generally for the treatment of degenerative joint diseases such as OA.


1993 ◽  
Vol 104 (2) ◽  
pp. 477-484
Author(s):  
M. Alvarez-Silva ◽  
L.C. da Silva ◽  
R. Borojevic

In chronic murine schistosomiasis, extramedullar myelopoiesis was observed, with proliferation of myeloid cells in liver parenchyma and in periovular granulomas. We have studied the question of whether cells obtained from granulomatous connective tissue may act as myelopoietic stroma, supporting long-term myeloid proliferation. Primary cell lines (GR) were obtained in vitro from periovular granulomas, induced in mouse livers by Schistosoma mansoni infection. These cells were characterized as myofibroblasts, and represent liver connective tissue cells involved in fibro-granulomatous reactions. They were able to sustain survival and proliferation of the multipotent myeloid cell lines FDC-P1 and DA-1 (dependent on interleukin-3 and/or granulocyte-macrophage colony stimulating factor, GM-CSF) without the addition of exogenous growth factors. This stimulation was dependent upon myeloid cell attachment to the GR cell layer; GR cell-conditioned medium had no activity. Primary murine skin fibroblasts could not sustain myelopoiesis. The endogenous growth-factor was identified as GM-CSF by neutralization assays with monoclonal antibodies. The stimulation of myelopoiesis occurred also when GR cells had been fixed with glutardialdehyde. The observed stimulatory activity was dependent upon heparan sulphate proteoglycans (HSPGs) associated with GR cell membranes. It could be dislodged from the cell layer with heparin or a high salt buffer. Our results indicate a molecular interaction between endogenous growth-factor and HSPGs; this interaction may be responsible for the stabilization and presentation of growth factors in myelopoietic stromas, mediating extramedullar proliferation of myeloid cells in periovular granulomas.


1987 ◽  
Vol 80 (9) ◽  
pp. 591-593
Author(s):  
A J Barrett

At this meeting of the RSM's Section of Pathology, the regulation of haemopoietic stem cells and growth factors regulating various cell lines were described, and the role of oncogenes, platelet-derived growth factor and nerve growth factor in growth regulation was discussed.


Author(s):  
Christopher J. O’Conor ◽  
Kenneth W. Ng ◽  
Lindsay E. Kugler ◽  
Gerard A. Ateshian ◽  
Clark T. Hung

Agarose has been used as an experimental scaffold for cartilage tissue engineering research due to its biocompatibility with chondrocytes, support of cartilage tissue development, and ability to transmit mechanical stimuli [1–3]. Tissue engineering studies have demonstrated that the temporal application of transforming growth factor (TGF) β3 for only 2 weeks elicits rapid tissue development that results in mechanical properties approaching native values [4]. However, it is not known whether this response to a 2-week exposure to growth factors is unique to TGF-β3. Therefore, the present study characterizes the response of tissue engineered cartilage to the temporal application of the anabolic growth factors TGF-β1, TGF-β3, and insulin-like growth factor I (IGF-I).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Maimonah-Eissa Al-Masawa ◽  
Wan Safwani Wan Kamarul Zaman ◽  
Kien-Hui Chua

AbstractThe scarcity of chondrocytes is a major challenge for cartilage tissue engineering. Monolayer expansion is necessary to amplify the limited number of chondrocytes needed for clinical application. Growth factors are often added to improve monolayer culture conditions, promoting proliferation, and enhancing chondrogenesis. Limited knowledge on the biosafety of the cell products manipulated with growth factors in culture has driven this study to evaluate the impact of growth factor cocktail supplements in chondrocyte culture medium on chondrocyte genetic stability and tumorigenicity. The growth factors were basic fibroblast growth factor (b-FGF), transforming growth factor β2 (TGF β2), insulin-like growth factor 1 (IGF-1), insulin-transferrin-selenium (ITS), and platelet-derived growth factor (PD-GF). Nasal septal chondrocytes cultured in growth factor cocktail exhibited a significantly high proliferative capacity. Comet assay revealed no significant DNA damage. Flow cytometry showed chondrocytes were mostly at G0-G1 phase, exhibiting normal cell cycle profile with no aneuploidy. We observed a decreased tumour suppressor genes’ expression (p53, p21, pRB) and no TP53 mutations or tumour formation after 6 months of implantation in nude mice. Our data suggest growth factor cocktail has a low risk of inducing genotoxic and tumorigenic effects on chondrocytes up to passage 6 with 16.6 population doublings. This preclinical tumorigenicity and genetic instability evaluation is crucial for further clinical works.


2014 ◽  
Vol 53 (1) ◽  
pp. T45-T61 ◽  
Author(s):  
Rosa Chung ◽  
Cory J Xian

Injuries to the growth plate cartilage often lead to bony repair, resulting in bone growth defects such as limb length discrepancy and angulation deformity in children. Currently utilised corrective surgeries are highly invasive and limited in their effectiveness, and there are no known biological therapies to induce cartilage regeneration and prevent the undesirable bony repair. In the last 2 decades, studies have investigated the cellular and molecular events that lead to bony repair at the injured growth plate including the identification of the four phases of injury repair responses (inflammatory, fibrogenic, osteogenic and remodelling), the important role of inflammatory cytokine tumour necrosis factor alpha in regulating downstream repair responses, the role of chemotactic and mitogenic platelet-derived growth factor in the fibrogenic response, the involvement and roles of bone morphogenic protein and Wnt/B-catenin signalling pathways, as well as vascular endothelial growth factor-based angiogenesis during the osteogenic response. These new findings could potentially lead to identification of new targets for developing a future biological therapy. In addition, recent advances in cartilage tissue engineering highlight the promising potential for utilising multipotent mesenchymal stem cells (MSCs) for inducing regeneration of injured growth plate cartilage. This review aims to summarise current understanding of the mechanisms for growth plate injury repair and discuss some progress, potential and challenges of MSC-based therapies to induce growth plate cartilage regeneration in combination with chemotactic and chondrogenic growth factors and supporting scaffolds.


1989 ◽  
Vol 71 (6) ◽  
pp. 875-883 ◽  
Author(s):  
James T. Rutka ◽  
Mark L. Rosenblum ◽  
Robert Stern ◽  
Henry J. Ralston ◽  
Dolores Dougherty ◽  
...  

✓ The effect of concentrated conditioned medium from each of eight human malignant glioma cell lines on the growth of indicator cells (normal rat kidney fibroblasts (NRK), clone 14) was determined in monolayer and in soft agar assay systems. The conditioned medium from all cell lines was mitogenic in the monolayer assay, but only SF-210, U-343 MG-A, and U-251 MG produced soluble factors that caused NRK cells to grow in soft agar. The soluble growth-promoting factors from these three cell lines were acid- and heat-stable (60°C for 30 minutes) but were inactivated by trypsin (100 µm/ml) and dithiothreitol (50 µM). The growth factors from SF-210 and U-343 MG-A were further purified by molecular-sieve chromatography. The partially purified growth factor from U-343 MG-A retained transforming growth factor (TGF)-like activity, had a molecular weight of 9 kD, was potentiated by TGF-β in the soft agar assay, competed effectively with 125I-epidermal growth factor (EGF) radiolabeled for the EGF receptor on A 431 epidermoid carcinoma cells, and was completely inhibited by monoclonal antibodies to TGF-α. The partially purified growth factor from SF-210 had a molecular weight of 17 kD, was not inhibited by monoclonal antibodies to platelet-derived growth factor (PDGF) or TGF-α, and did not bind to a heparin-Sepharose column. These results imply that U-343 MG-A secretes a growth factor with TGF-α-like activity, and SF-210 secretes a TGF with neither TGF-α nor TGF-β activity.


Blood ◽  
1991 ◽  
Vol 77 (7) ◽  
pp. 1534-1545 ◽  
Author(s):  
R O'Connor ◽  
A Cesano ◽  
B Lange ◽  
J Finan ◽  
PC Nowell ◽  
...  

Cells from 10 cases of childhood acute T-lymphoblastic leukemia (T-ALL) were cultured in the presence of recombinant human interleukins (rhIL) or colony-stimulating factors (CSF) to analyze their growth factor requirements and differentiative potential. Although cells from most leukemic samples displayed a short-term proliferative response to several hematopoietic growth factors, only the ones featuring chromosomal translocations could be established as permanent cell lines. Two cell lines could be initiated only in the presence of IL-3 (TALL-103 and TALL-106), one in granulocyte-macrophage CSF (GM-CSF) (TALL-101), and one in IL-2 (TALL-104); only one cell line (TALL-105) was originated in the absence of growth factors. The TALL-101 and TALL- 103 cell lines, derived from very immature T-ALL cases, underwent growth factor-dependent phenotypic conversion (lymphoid to myeloid). However, the T-cell receptor rearrangement and karyotype of the original leukemic clones were retained. In contrast, the TALL-104, - 105, and -106 cell lines which originated from more mature T-ALL cases, maintained a T-lymphoblastic phenotype regardless of the growth factors in which they were expanded. These data demonstrate in vitro the aggressive nature of T-ALL cases bearing chromosomal abnormalities, and indicate that the lineage commitment of the malignant clone depends on its stage of maturation in T-cell ontogeny.


Sign in / Sign up

Export Citation Format

Share Document