Molecular Imaging of Biological Processes with PET: Evaluating Biologic Bases of Cerebral Function

PET ◽  
2004 ◽  
pp. 509-583 ◽  
Author(s):  
Daniel H. S. Silverman ◽  
William P. Melega
Author(s):  
Jonghoon Kim ◽  
Nohyun Lee ◽  
Taeghwan Hyeon

Molecular imaging enables us to non-invasively visualize cellular functions and biological processes in living subjects, allowing accurate diagnosis of diseases at early stages. For successful molecular imaging, a suitable contrast agent with high sensitivity is required. To date, various nanoparticles have been developed as contrast agents for medical imaging modalities. In comparison with conventional probes, nanoparticles offer several advantages, including controllable physical properties, facile surface modification and long circulation time. In addition, they can be integrated with various combinations for multimodal imaging and therapy. In this opinion piece, we highlight recent advances and future perspectives of nanomaterials for molecular imaging. This article is part of the themed issue ‘Challenges for chemistry in molecular imaging’.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5459
Author(s):  
Huiling Li ◽  
Zhen Liu ◽  
Lujie Yuan ◽  
Kevin Fan ◽  
Yongxue Zhang ◽  
...  

Breast cancer is a malignant tumor that can affect women worldwide and endanger their health and wellbeing. Early detection of breast cancer can significantly improve the prognosis and survival rate of patients, but with traditional anatomical imagine methods, it is difficult to detect lesions before morphological changes occur. Radionuclide-based molecular imaging based on positron emission tomography (PET) and single-photon emission computed tomography (SPECT) displays its advantages for detecting breast cancer from a functional perspective. Radionuclide labeling of small metabolic compounds can be used for imaging biological processes, while radionuclide labeling of ligands/antibodies can be used for imaging receptors. Noninvasive visualization of biological processes helps elucidate the metabolic state of breast cancer, while receptor-targeted radionuclide molecular imaging is sensitive and specific for visualization of the overexpressed molecular markers in breast cancer, contributing to early diagnosis and better management of cancer patients. The rapid development of radionuclide probes aids the diagnosis of breast cancer in various aspects. These probes target metabolism, amino acid transporters, cell proliferation, hypoxia, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), gastrin-releasing peptide receptor (GRPR) and so on. This article provides an overview of the development of radionuclide molecular imaging techniques present in preclinical or clinical studies, which are used as tools for early breast cancer diagnosis.


2020 ◽  
Vol 13 (03) ◽  
pp. 2030005
Author(s):  
Zhao Lei ◽  
Yun Zeng ◽  
Xiaofen Zhang ◽  
Xiaoyong Wang ◽  
Gang Liu

Noninvasive molecular imaging makes the observation and comprehensive understanding of complex biological processes possible. Photoacoustic imaging (PAI) is a fast evolving hybrid imaging technology enabling in vivo imaging with high sensitivity and spatial resolution in deep tissue. Among the various probes developed for PAI, genetically encoded reporters attracted increasing attention of researchers, which provide improved performance by acquiring images of a PAI reporter gene’s expression driven by disease-specific enhancers/promoters. Here, we present a brief overview of recent studies about the existing photoacoustic reporter genes (RGs) for noninvasive molecular imaging, such as the pigment enzyme reporters, fluorescent proteins and chromoproteins, photoswitchable proteins, including their properties and potential applications in theranostics. Furthermore, the challenges that PAI RGs face when applied to the clinical studies are also examined.


2017 ◽  
Vol 10 (04) ◽  
pp. 1730004 ◽  
Author(s):  
Liming Liu ◽  
Huan Qin

Photoacoustic imaging (PAI) breaks through the optical diffusion limit by making use of the PA effect. By converting incident photons into ultrasonic waves, PAI combines high contrast of optical imaging and high spatial resolution in depth tissue of ultrasound imaging in a single imaging modality. This imaging modality has now shown potential for molecular imaging, which enables visualization of biological processes with systemically introduced functional nanoparticles. In the current review, the potentials of different optical nanoprobes as PAI contrast agents were elucidated and discussed.


2012 ◽  
Vol 303 (12) ◽  
pp. H1397-H1410 ◽  
Author(s):  
Alkystis Phinikaridou ◽  
Marcelo E. Andia ◽  
Ajay M. Shah ◽  
René M. Botnar

Molecular imaging of the cardiovascular system heavily relies on the development of new imaging probes and technologies to facilitate visualization of biological processes underlying or preceding disease. Molecular imaging is a highly active research discipline that has seen tremendous growth over the past decade. It has broadened our understanding of oncologic, neurologic, and cardiovascular diseases by providing new insights into the in vivo biology of disease progression and therapeutic interventions. As it allows for the longitudinal evaluation of biological processes, it is ideally suited for monitoring treatment response. In this review, we will concentrate on the major accomplishments and advances in the field of molecular imaging of atherosclerosis and myocardial infarction with a special focus on magnetic resonance imaging.


2020 ◽  
Vol 93 (1113) ◽  
pp. 20190740 ◽  
Author(s):  
Rong Bing ◽  
Krithika Loganath ◽  
Philip Adamson ◽  
David Newby ◽  
Alastair Moss

Despite recent advances, cardiovascular disease remains the leading cause of death globally. As such, there is a need to optimise our current diagnostic and risk stratification pathways in order to better deliver individualised preventative therapies. Non-invasive imaging of coronary artery plaque can interrogate multiple aspects of coronary atherosclerotic disease, including plaque morphology, anatomy and flow. More recently, disease activity is being assessed to provide mechanistic insights into in vivo atherosclerosis biology. Molecular imaging using positron emission tomography is unique in this field, with the potential to identify specific biological processes using either bespoke or re-purposed radiotracers. This review provides an overview of non-invasive vulnerable plaque detection and molecular imaging of coronary atherosclerosis.


Endocrinology ◽  
2010 ◽  
Vol 151 (2) ◽  
pp. 474-481 ◽  
Author(s):  
Rodney F. Minchin ◽  
Darren J. Martin

Molecular imaging is a technique for quantifying physiological changes in vivo using imaging probes, or beacons, which can be detected noninvasively. This field of study has advanced rapidly in recent years, in part due to the application of nanotechnology. The versatility of different imaging modalities has been significantly enhanced by innovative nanoparticle development. These nanoprobes can be used to image specific cells and tissues within a whole organism. Some of the nanoparticles under development may be useful to measure biological processes associated with human disease and help monitor how these change with treatment. This review highlights some of the recent advances in nanoparticles for molecular imaging. It also addresses issues that arise with the use of nanoparticles. Whereas much of the technology remains at an experimental stage, the potential for enhancing disease diagnosis and treatment is considerable.


2007 ◽  
Vol 69 (3) ◽  
pp. 703-704 ◽  
Author(s):  
Peter Babinec ◽  
Melánia Babincová

Sign in / Sign up

Export Citation Format

Share Document