scholarly journals Recent development of nanoparticles for molecular imaging

Author(s):  
Jonghoon Kim ◽  
Nohyun Lee ◽  
Taeghwan Hyeon

Molecular imaging enables us to non-invasively visualize cellular functions and biological processes in living subjects, allowing accurate diagnosis of diseases at early stages. For successful molecular imaging, a suitable contrast agent with high sensitivity is required. To date, various nanoparticles have been developed as contrast agents for medical imaging modalities. In comparison with conventional probes, nanoparticles offer several advantages, including controllable physical properties, facile surface modification and long circulation time. In addition, they can be integrated with various combinations for multimodal imaging and therapy. In this opinion piece, we highlight recent advances and future perspectives of nanomaterials for molecular imaging. This article is part of the themed issue ‘Challenges for chemistry in molecular imaging’.

2020 ◽  
Vol 13 (03) ◽  
pp. 2030005
Author(s):  
Zhao Lei ◽  
Yun Zeng ◽  
Xiaofen Zhang ◽  
Xiaoyong Wang ◽  
Gang Liu

Noninvasive molecular imaging makes the observation and comprehensive understanding of complex biological processes possible. Photoacoustic imaging (PAI) is a fast evolving hybrid imaging technology enabling in vivo imaging with high sensitivity and spatial resolution in deep tissue. Among the various probes developed for PAI, genetically encoded reporters attracted increasing attention of researchers, which provide improved performance by acquiring images of a PAI reporter gene’s expression driven by disease-specific enhancers/promoters. Here, we present a brief overview of recent studies about the existing photoacoustic reporter genes (RGs) for noninvasive molecular imaging, such as the pigment enzyme reporters, fluorescent proteins and chromoproteins, photoswitchable proteins, including their properties and potential applications in theranostics. Furthermore, the challenges that PAI RGs face when applied to the clinical studies are also examined.


2018 ◽  
Vol 48 (4) ◽  
pp. 1401-1415 ◽  
Author(s):  
Yingfeng Tu ◽  
Yao Sun ◽  
Yuhua Fan ◽  
Zhen Cheng ◽  
Bo Yu

Recently, multimodality molecular imaging has evolved into a fast-growing research field with goals of detecting and measuring biological processes in vivo non-invasively. Researchers have come to realize that the complementary abilities of different imaging modalities over single modality could provide more precisely information for the diagnosis of diseases. At present, nanoparticles-based multimodal imaging probes have received significant attention because of their ease of preparation and straightforward integration of each modality into one entity. More importantly, nanotechnology has an increasing impact on multimodality molecular imaging of cardiovascular diseases, such as atherosclerosis and vulnerable plaque, myocardial infarction, angiogenesis, apoptosis and so on. In this review, we briefly summarize that various nanoprobes are exploited for targeted molecular imaging of cardiovascular diseases, as well as associated multimodality imaging approaches and their applications in the diagnosis and treatment of cardiovascular diseases.


Author(s):  
Xue-feng Shi ◽  
Bin Ji ◽  
Yanyan Kong ◽  
Yihui Guan ◽  
Ruiqing Ni

Optoacoustic (photoacoustic) imaging has demonstrated versatile applications in biomedical research, visualizing the disease pathophysiology and monitoring the treatment effect in an animal model, as well as toward applications in the clinical setting. Given the complex disease mechanism, multimodal imaging provides important etiological insights with different molecular, structural, and functional readouts in vivo. Various multimodal optoacoustic molecular imaging approaches have been applied in preclinical brain imaging studies, including optoacoustic/fluorescence imaging, optoacoustic imaging/magnetic resonance imaging (MRI), optoacoustic imaging/MRI/Raman, optoacoustic imaging/positron emission tomography, and optoacoustic/computed tomography. There is a rapid development in molecular imaging contrast agents employing a multimodal imaging strategy for pathological targets involved in brain diseases. Many chemical dyes for optoacoustic imaging have fluorescence properties and have been applied in hybrid optoacoustic/fluorescence imaging. Nanoparticles are widely used as hybrid contrast agents for their capability to incorporate different imaging components, tunable spectrum, and photostability. In this review, we summarize contrast agents including chemical dyes and nanoparticles applied in multimodal optoacoustic brain imaging integrated with other modalities in small animals, and provide outlook for further research.


2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
Zhe Liu ◽  
Fabian Kiessling ◽  
Jessica Gätjens

The biomedical applications of nanoparticles in molecular imaging, drug delivery, and therapy give rise to the term “nanomedicine” and have led to ever-growing developments in the past decades. New generation of imaging probes (or contrast agents) and state of the art of various strategies for efficient multimodal molecular imaging have drawn much attention and led to successful preclinical uses. In this context, we intend to elucidate the fundamentals and review recent advances as well as to provide an outlook perspective in these fields.


2019 ◽  
Vol 7 (35) ◽  
pp. 5345-5351 ◽  
Author(s):  
Lingchen Meng ◽  
Xibo Ma ◽  
Shan Jiang ◽  
Guang Ji ◽  
Wenkun Han ◽  
...  

High-quality multimodal imaging requires exogenous contrast agents with high sensitivity, spatial–temporal resolution, and high penetration depth for the accurate diagnosis and surveillance of cancer.


Author(s):  
Minu Mathew ◽  
Chandra Sekhar Rout

This review details the fundamentals, working principles and recent developments of Schottky junctions based on 2D materials to emphasize their improved gas sensing properties including low working temperature, high sensitivity, and selectivity.


Sign in / Sign up

Export Citation Format

Share Document