scholarly journals Advances in molecular imaging of atherosclerosis and myocardial infarction: shedding new light on in vivo cardiovascular biology

2012 ◽  
Vol 303 (12) ◽  
pp. H1397-H1410 ◽  
Author(s):  
Alkystis Phinikaridou ◽  
Marcelo E. Andia ◽  
Ajay M. Shah ◽  
René M. Botnar

Molecular imaging of the cardiovascular system heavily relies on the development of new imaging probes and technologies to facilitate visualization of biological processes underlying or preceding disease. Molecular imaging is a highly active research discipline that has seen tremendous growth over the past decade. It has broadened our understanding of oncologic, neurologic, and cardiovascular diseases by providing new insights into the in vivo biology of disease progression and therapeutic interventions. As it allows for the longitudinal evaluation of biological processes, it is ideally suited for monitoring treatment response. In this review, we will concentrate on the major accomplishments and advances in the field of molecular imaging of atherosclerosis and myocardial infarction with a special focus on magnetic resonance imaging.

Endocrinology ◽  
2010 ◽  
Vol 151 (2) ◽  
pp. 474-481 ◽  
Author(s):  
Rodney F. Minchin ◽  
Darren J. Martin

Molecular imaging is a technique for quantifying physiological changes in vivo using imaging probes, or beacons, which can be detected noninvasively. This field of study has advanced rapidly in recent years, in part due to the application of nanotechnology. The versatility of different imaging modalities has been significantly enhanced by innovative nanoparticle development. These nanoprobes can be used to image specific cells and tissues within a whole organism. Some of the nanoparticles under development may be useful to measure biological processes associated with human disease and help monitor how these change with treatment. This review highlights some of the recent advances in nanoparticles for molecular imaging. It also addresses issues that arise with the use of nanoparticles. Whereas much of the technology remains at an experimental stage, the potential for enhancing disease diagnosis and treatment is considerable.


2018 ◽  
Vol 48 (4) ◽  
pp. 1401-1415 ◽  
Author(s):  
Yingfeng Tu ◽  
Yao Sun ◽  
Yuhua Fan ◽  
Zhen Cheng ◽  
Bo Yu

Recently, multimodality molecular imaging has evolved into a fast-growing research field with goals of detecting and measuring biological processes in vivo non-invasively. Researchers have come to realize that the complementary abilities of different imaging modalities over single modality could provide more precisely information for the diagnosis of diseases. At present, nanoparticles-based multimodal imaging probes have received significant attention because of their ease of preparation and straightforward integration of each modality into one entity. More importantly, nanotechnology has an increasing impact on multimodality molecular imaging of cardiovascular diseases, such as atherosclerosis and vulnerable plaque, myocardial infarction, angiogenesis, apoptosis and so on. In this review, we briefly summarize that various nanoprobes are exploited for targeted molecular imaging of cardiovascular diseases, as well as associated multimodality imaging approaches and their applications in the diagnosis and treatment of cardiovascular diseases.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Erik H. J. G. Aarntzen ◽  
Edel Noriega-Álvarez ◽  
Vera Artiko ◽  
André H. Dias ◽  
Olivier Gheysens ◽  
...  

AbstractInflammatory musculoskeletal diseases represent a group of chronic and disabling conditions that evolve from a complex interplay between genetic and environmental factors that cause perturbations in innate and adaptive immune responses. Understanding the pathogenesis of inflammatory musculoskeletal diseases is, to a large extent, derived from preclinical and basic research experiments. In vivo molecular imaging enables us to study molecular targets and to measure biochemical processes non-invasively and longitudinally, providing information on disease processes and potential therapeutic strategies, e.g. efficacy of novel therapeutic interventions, which is of complementary value next to ex vivo (post mortem) histopathological analysis and molecular assays. Remarkably, the large body of preclinical imaging studies in inflammatory musculoskeletal disease is in contrast with the limited reports on molecular imaging in clinical practice and clinical guidelines. Therefore, in this EANM-endorsed position paper, we performed a systematic review of the preclinical studies in inflammatory musculoskeletal diseases that involve radionuclide imaging, with a detailed description of the animal models used. From these reflections, we provide recommendations on what future studies in this field should encompass to facilitate a greater impact of radionuclide imaging techniques on the translation to clinical settings.


2020 ◽  
Vol 13 (03) ◽  
pp. 2030005
Author(s):  
Zhao Lei ◽  
Yun Zeng ◽  
Xiaofen Zhang ◽  
Xiaoyong Wang ◽  
Gang Liu

Noninvasive molecular imaging makes the observation and comprehensive understanding of complex biological processes possible. Photoacoustic imaging (PAI) is a fast evolving hybrid imaging technology enabling in vivo imaging with high sensitivity and spatial resolution in deep tissue. Among the various probes developed for PAI, genetically encoded reporters attracted increasing attention of researchers, which provide improved performance by acquiring images of a PAI reporter gene’s expression driven by disease-specific enhancers/promoters. Here, we present a brief overview of recent studies about the existing photoacoustic reporter genes (RGs) for noninvasive molecular imaging, such as the pigment enzyme reporters, fluorescent proteins and chromoproteins, photoswitchable proteins, including their properties and potential applications in theranostics. Furthermore, the challenges that PAI RGs face when applied to the clinical studies are also examined.


MedChemComm ◽  
2015 ◽  
Vol 6 (3) ◽  
pp. 391-402 ◽  
Author(s):  
Masahiro Ono ◽  
Hideo Saji

We review recent advances in our development of molecular imaging probes for PET, SPECT, and optical imaging for in vivo detection of β-amyloid plaques in the brain.


2006 ◽  
Vol 342 (3) ◽  
pp. 773-774 ◽  
Author(s):  
Jochen Tillmanns ◽  
Harald Carlsen ◽  
Rune Blomhoff ◽  
Guro Valen ◽  
Laura Calvillo ◽  
...  

2016 ◽  
Vol 80 (2) ◽  
pp. 369-386 ◽  
Author(s):  
Helena M. van Dongen ◽  
Niala Masoumi ◽  
Kenneth W. Witwer ◽  
D. Michiel Pegtel

SUMMARYExtracellular vesicles (EVs) have emerged as crucial mediators of intercellular communication, being involved in a wide array of key biological processes. Eukaryotic cells, and also bacteria, actively release heterogeneous subtypes of EVs into the extracellular space, where their contents reflect their (sub)cellular origin and the physiologic state of the parent cell. Within the past 20 years, presumed subtypes of EVs have been given a rather confusing diversity of names, including exosomes, microvesicles, ectosomes, microparticles, virosomes, virus-like particles, and oncosomes, and these names are variously defined by biogenesis, physical characteristics, or function. The latter category, functions, in particular the transmission of biological signals between cellsin vivoand how EVs control biological processes, has garnered much interest. EVs have pathophysiological properties in cancer, neurodegenerative disorders, infectious disease, and cardiovascular disease, highlighting possibilities not only for minimally invasive diagnostic applications but also for therapeutic interventions, like macromolecular drug delivery. Yet, in order to pursue therapies involving EVs and delivering their cargo, a better grasp of EV targeting is needed. Here, we review recent progress in understanding the molecular mechanisms underpinning EV uptake by receptor-ligand interactions with recipient cells, highlighting once again the overlap of EVs and viruses. Despite their highly heterogeneous nature, EVs require common viral entry pathways, and an unanticipated specificity for cargo delivery is being revealed. We discuss the challenges ahead in delineating specific roles for EV-associated ligands and cellular receptors.


Sign in / Sign up

Export Citation Format

Share Document