Cuticle Permeability Studies

Author(s):  
Jörg Schönherr ◽  
Peter Baur
Keyword(s):  
2018 ◽  
Vol 15 (3) ◽  
pp. 342-350 ◽  
Author(s):  
Yetkin Elitez ◽  
Meliha Ekinci ◽  
Derya Ilem-Ozdemir ◽  
Evren Gundogdu ◽  
Makbule Asikoglu

1993 ◽  
Vol 265 (4) ◽  
pp. C901-C917 ◽  
Author(s):  
R. W. Van Dyke

Both lysosomes and endosomes are acidified by an electrogenic proton pump, although studies in intact cells indicate that the steady-state internal pH (pHi) of lysosomes is more acid than that of endosomes. We undertook the present study to examine in detail the acidification mechanism of purified rat liver secondary lysosomes and to compare it with that of a population of early endosomes. Both endosomes and lysosomes exhibited ATP-dependent acidification, but proton influx rates were 2.4- to 2.7-fold greater for endosomes than for lysosomes because of differences in both buffering capacity and acidification rates, suggesting that endosomes exhibited greater numbers or rates of proton pumps. Lysosomes, however, exhibited a more acidic steady-state pHi due in part to a slower proton leak rate. Changes in medium Cl- increased acidification rates of endosomes more than lysosomes, and the lysosome ATP-dependent interior-positive membrane potential was only partially eliminated by high-Cl- medium. Permeability studies suggested that lysosomes were less permeable to Na+, Li+, and Cl- and more permeable to K+ and PO4(2-) than endosomes. Na-K-adenosine-triphosphatase did not appear to regulate acidification of either vesicle type. Endosome and lysosome acidification displayed similar inhibition profiles to N-ethylmaleimide, dicyclohexyl-carbodiimide, and vanadate, although lysosomes were somewhat more sensitive [concentration producing 50% maximal inhibition (IC50) 1 nM] to bafilomycin A1 than endosomes (IC50 7.6 nM). Oligomycin (1.5-3 microM) stimulated lysosome acidification due to shunting of membrane potential. Overall, acidification of endosomes and lysosomes was qualitatively similar but quantitatively somewhat different, possibly related to differences in the density or rate of proton pumps as well as vesicle permeability to protons, anions, and other cations.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 464 ◽  
Author(s):  
Bright Asare-Bediako ◽  
Sunil Noothi ◽  
Sergio Li Calzi ◽  
Baskaran Athmanathan ◽  
Cristiano Vieira ◽  
...  

We sought to delineate the retinal features associated with the high-fat diet (HFD) mouse, a widely used model of obesity. C57BL/6 mice were fed either a high-fat (60% fat; HFD) or low-fat (10% fat; LFD) diet for up to 12 months. The effect of HFD on body weight and insulin resistance were measured. The retina was assessed by electroretinogram (ERG), fundus photography, permeability studies, and trypsin digests for enumeration of acellular capillaries. The HFD cohort experienced hypercholesterolemia when compared to the LFD cohort, but not hyperglycemia. HFD mice developed a higher body weight (60.33 g vs. 30.17g, p < 0.0001) as well as a reduced insulin sensitivity index (9.418 vs. 62.01, p = 0.0002) compared to LFD controls. At 6 months, retinal functional testing demonstrated a reduction in a-wave and b-wave amplitudes. At 12 months, mice on HFD showed evidence of increased retinal nerve infarcts and vascular leakage, reduced vascular density, but no increase in number of acellular capillaries compared to LFD mice. In conclusion, the HFD mouse is a useful model for examining the effect of prediabetes and hypercholesterolemia on the retina. The HFD-induced changes appear to occur slower than those observed in type 2 diabetes (T2D) models but are consistent with other retinopathy models, showing neural damage prior to vascular changes.


Author(s):  
Jonas Borregaard Eriksen ◽  
Ann-Christin Jacobsen ◽  
Katrine Tækker Christensen ◽  
Annette Bauer-Brandl ◽  
Martin Brandl

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 606
Author(s):  
Ana F. Pereira-da-Mota ◽  
María Vivero-Lopez ◽  
Ana Topete ◽  
Ana Paula Serro ◽  
Angel Concheiro ◽  
...  

Statins are receiving increasing attention in the ophthalmic field. Their activity as 3-hydroxy-3-methylglutaryl–CoA (HMG–CoA) reductase inhibitors is clinically used to regulate cholesterol levels and leads to pleiotropic effects, which may help in the management of diabetes-related ocular pathologies. This work aims to design bioinspired contact lenses (CLs) with an affinity for atorvastatin by mimicking the active site of HMG–CoA reductase. Sets of imprinted and nonimprinted 2-hydroxyethyl methacrylate (HEMA) hydrogels were synthesized, varying the contents in functional monomers that bear chemical groups that resemble those present in HMG–CoA reductase, namely, ethylene glycol phenyl ether methacrylate (EGPEM), 2-aminoethyl methacrylate hydrochloride (AEMA), and N-(3-aminopropyl) methacrylamide hydrochloride (APMA). The hydrogels were characterized in terms of suitability as CLs (solvent uptake, light transmission, mechanical properties, and biocompatibility) and capability to load and release atorvastatin. Three sterilization protocols (steam heat, gamma radiation, and high hydrostatic pressure) were implemented and their effects on hydrogel properties were evaluated. Copolymerization of AEMA and, particularly, APMA endowed the hydrogels with a high affinity for atorvastatin (up to 11 mg/g; KN/W > 200). Only high hydrostatic pressure sterilization preserved atorvastatin stability and hydrogel performance. Permeability studies through the porcine cornea and sclera tissues revealed that the amount of atorvastatin accumulated in the cornea and sclera could be effective to treat ocular surface diseases.


2014 ◽  
Vol 29 (4) ◽  
pp. 537-544 ◽  
Author(s):  
Marco Antônio dos. Reis Júnior ◽  
Ana Cláudia Miranda de Faria ◽  
Eudes da. Silva Velozo ◽  
Teresa Dalla Costa ◽  
Frank Pereira de Andrade ◽  
...  

1980 ◽  
Vol 142 (5) ◽  
pp. 676-684 ◽  
Author(s):  
R. A. Argenzio ◽  
S. C. Whipp ◽  
R. D. Glock

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Nilesh P. Kala ◽  
Divyesh H. Shastri ◽  
Pragna K. Shelat

Nifedipine is an antihypertensive BCS class II drug which has poor bioavailability when given orally. The objective of the present study was to increase the bioavailability of nifedipine, by formulation and evaluation of a buccoadhesive liquisolid system using magnesium aluminium silicate (Neusilin) as both carrier and coating material and dissolution media were selected based on the solubility studies. A mixture of carboxymethylcellulose sodium and carbomer was used as mucoadhesive polymers. Buccoadhesive tablets were prepared by direct compression. FTIR studies confirmed no interaction between drug and excipients. XRD studies indicated change/reduction in crystallinity of drug. The powder characteristics were evaluated by different flow parameters to comply with pharmacopoeial specifications. The dissolution studies for liquisolid compacts and tablet formulations were carried out and it was found that nifedipine liquisolid tablets formulated from bioadhesive polymers containing 49% liquisolid system, 17.5% carbomer, and 7.5% carboxymethylcellulose sodium showed the best results in terms of dissolution properties. Prepared formulation batches were evaluated for swelling, bioadhesion strength, ex vivo residence time, and permeability studies. The optimized batch was showing promising features of the system. Formulating nifedipine as a buccoadhesive tablet allows reduction in dose and offers better control over the plasma levels.


2021 ◽  
Author(s):  
Vikrant Wagle ◽  
Abdullah Yami ◽  
Michael Onoriode ◽  
Jacques Butcher ◽  
Nivika Gupta

Abstract The present paper describes the results of the formulation of an acid-soluble low ECD organoclay-free invert emulsion drilling fluid formulated with acid soluble manganese tetroxide and a specially designed bridging package. The paper also presents a short summary of field applications to date. The novel, non-damaging fluid has superior rheology resulting in lower ECD, excellent suspension properties for effective hole cleaning and barite-sag resistance while also reducing the risk of stuck pipe in high over balance applications. 95pcf high performance invert emulsion fluid (HPIEF) was formulated using an engineered bridging package comprising of acid-soluble bridging agents and an acid-soluble weighting agent viz. manganese tetroxide. The paper describes the filtration and rheological properties of the HPIEF after hot rolling at 300oF. Different tests such as contamination testing, sag-factor analysis, high temperature-high pressure rheology measurements and filter-cake breaking studies at 300oF were performed on the HPIEF. The 95pcf fluid was also subjected to particle plugging experiments to determine the invasion characteristics and the non-damaging nature of the fluids. The 95pcf HPIEF exhibited optimal filtration properties at high overbalance conditions. The low PV values and rheological profile support low ECDs while drilling. The static aging tests performed on the 95pcf HPIEF resulted in a sag factor of less than 0.53, qualifying the inherent stability for expected downhole conditions. The HPIEF demonstrated resilience to contamination testing with negligible change in properties. Filter-cake breaking experiments performed using a specially designed breaker fluid system gave high filter-cake breaking efficiency. Return permeability studies were performed with the HPIEF against synthetic core material, results of which confirmed the non-damaging design of the fluid. The paper thus demonstrates the superior performance of the HPIEF in achieving the desired lab and field performance.


2017 ◽  
Vol 7 (9) ◽  
pp. 946 ◽  
Author(s):  
Hongwu Yin ◽  
Hongling Ma ◽  
Xiangsheng Chen ◽  
Xilin Shi ◽  
Chunhe Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document