Electrogenic acid extrusion by nutrient deficient barley seedlings

Author(s):  
C. E Lee ◽  
M L Reilly
Keyword(s):  
2007 ◽  
Vol 293 (2) ◽  
pp. H1254-H1264 ◽  
Author(s):  
Taku Yamamoto ◽  
Takeshi Shirayama ◽  
Tomohiko Sakatani ◽  
Tomosaburo Takahashi ◽  
Hideo Tanaka ◽  
...  

The Na+-HCO3− cotransporter (NBC) plays a key role in intracellular pH (pHi) regulation in normal ventricular muscle. However, the state of NBC in nonischemic hypertrophied hearts is unresolved. In this study, we examined functional and molecular properties of NBC in adult rat ventricular myocytes. The cells were enzymatically isolated from both normal and hypertrophied hearts. Ventricular hypertrophy was induced by pressure overload created by suprarenal abdominal aortic constriction of 50% for 7 wk. pHi was measured in single cells using the fluorescent pH indicator 2′,7′-bis(2-carboxyethyl)5-( 6 )carboxyfluorescein. Real-time PCR analysis was used to quantitatively assess expression of NBC-encoding mRNA, including SLC4A4 (encoding electrogenic NBC, NBCe1) and SLC4A7 (electroneutral NBC, NBCn1). Our results demonstrate that: 1) mRNA levels of both the electrogenic NBCe1 (SLC4A4) and electroneutral NBCn1 (SLC4A7) forms of NBC were increased by aortic constriction, 2) the onset of NBC upregulation occurred within 3 days after constriction, 3) normal and hypertrophied ventricles displayed regional differences in NBC expression, 4) acid extrusion via NBC ( JNBC) was increased significantly in hypertrophied myocytes, 5) although acid extrusion via Na+/H+ exchange was also increased in hypertrophied myocytes, the relative enhancement of JNBC was larger, 6) membrane depolarization markedly increased JNBC in hypertrophied myocytes, and 7) losartan, an ANG II AT1 receptor antagonist, significantly attenuated the upregulation of both NBCs induced by 3 wk of aortic constriction. Enhanced NBC activity during hypertrophic development provides a mechanism for intracellular Na+ overload, which may render the ventricles more vulnerable to Ca2+ overload during ischemia-reperfusion.


2000 ◽  
Vol 278 (2) ◽  
pp. G197-G206 ◽  
Author(s):  
J. Praetorius ◽  
D. Andreasen ◽  
B. L. Jensen ◽  
M. A. Ainsworth ◽  
U. G. Friis ◽  
...  

Na+/H+-exchangers (NHE) mediate acid extrusion from duodenal epithelial cells, but the isoforms involved have not previously been determined. Thus we investigated 1) the contribution of Na+-dependent processes to acid extrusion, 2) sensitivity to Na+/H+ exchange inhibitors, and 3) molecular expression of NHE isoforms. By fluorescence spectroscopy the recovery of intracellular pH (pHi) was measured on suspensions of isolated acidified murine duodenal epithelial cells loaded with 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Expression of NHE isoforms was studied by RT-PCR and Western blot analysis. Reduction of extracellular Na+ concentration ([Na+]o) during pHirecovery decreased H+ efflux to minimally 12.5% of control with a relatively high apparent Michaelis constant for extracellular Na+. The Na+/H+exchange inhibitors ethylisopropylamiloride and amiloride inhibited H+ efflux maximally by 57 and 80%, respectively. NHE1, NHE2, and NHE3 were expressed at the mRNA level (RT-PCR) as well as at the protein level (Western blot analysis). On the basis of the effects of low [Na+]o and inhibitors we propose that acid extrusion in duodenal epithelial cells involves Na+/H+ exchange by isoforms NHE1, NHE2, and NHE3.


2018 ◽  
Vol 69 (2) ◽  
pp. 65-72 ◽  
Author(s):  
Sudipto Datta ◽  
Ankita Das ◽  
Pranabesh Sasmal ◽  
Sumant Bhutoria ◽  
Amit Roy Chowdhury ◽  
...  

1978 ◽  
Vol 235 (1) ◽  
pp. C49-C54 ◽  
Author(s):  
A. Roos ◽  
W. F. Boron

Changes of the intracellular pH of rat diaphragm muscle were monitored at 30-min intervals with the weak acid DMO (5,5-dimethyl-2,4-oxazolidinedione). Transferring the muscle from a CO2-containing to a CO2-free solution caused intracellular pH (pHi) to rise by an average of 0.18 during the first 30 min and then to level off at a slightly lower value over the next 60-90 min. Transferring the muscle from a CO2-free to a CO2-containing solution caused pHi to fall by 0.18 during the first 30 min and then to recover by 0.05 over the next 90 min. Subsequent return to the CO2-free solution caused pHi to overshoot the control value by 0.10. Both the recovery and the overshoot can be accounted for by an acid-extruding pump. Intracellular acid loading with 118 mM DMO similarly caused pHi to fall initially, to recover slowly during the acid loading, and then to overshoot the control pHi on removal of the acid load. In the absence of HCO3-/CO2, acid extrusion was reduced by about a fifth. SITS (4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid) had no effect. The absence of either Na+ or Cl- from HCO3-/CO2- free solution reduced acid extrusion by about a half.


2002 ◽  
Vol 283 (4) ◽  
pp. E729-E737 ◽  
Author(s):  
Greg Coates ◽  
Itzhak Nissim ◽  
Harold Battarbee ◽  
Tomas Welbourne

We studied the effect of the antihyperglycemic glitazones, ciglitazone, troglitazone, and rosiglitazone, on glutamine metabolism in renal tubule-derived Madin-Darby canine kidney (MDCK) cells. Troglitazone (25 μM) enhanced glucose uptake and lactate production by 108 and 92% (both P < 0.001). Glutamine utilization was not inhibited, but alanine formation decreased and ammonium formation increased (both P < 0.005). The decrease in net alanine formation occurred with a change in alanine aminotransferase (ALT) reactants, from close to equilibrium to away from equilibrium, consistent with inhibition of ALT activity. A shift of glutamine's amino nitrogen from alanine into ammonium was confirmed by usingl-[2-15N]glutamine and measuring the [15N]alanine and [15N]ammonium production. The glitazone-induced shift from alanine to ammonium in glutamate metabolism was dose dependent, with troglitazone being twofold more potent than rosiglitazone and ciglitazone. All three glitazones induced a spontaneous cellular acidosis, reflecting impaired acid extrusion in responding to both an exogenous (NH[Formula: see text]) and an endogenous (lactic acid) load. Our findings are consistent with glitazones inducing a spontaneous cellular acidosis associated with a shift in glutamine amino nitrogen metabolism from predominantly anabolic into a catabolic pathway.


2018 ◽  
Vol 46 (3) ◽  
pp. 1252-1262 ◽  
Author(s):  
Huai-Ren Chang ◽  
Chih-Feng Lien ◽  
Jing-Ren Jeng ◽  
Jen-Che Hsieh ◽  
Chen-Wei Chang ◽  
...  

Background/Aims: Intermittent hypoxia (IH) has been shown to exert preconditioning-like cardioprotective effects. It also has been reported that IH preserves intracellular pH (pHi) during ischemia and protects cardiomyocytes against ischemic reperfusion injury. However, the exact mechanism is still unclear. Methods: In this study, we used proton indicator BCECF-AM to analyze the rate of pHi recovery from acidosis in the IH model of rat neonatal cardiomyocytes. Neonatal cardiomyocytes were first treated with repetitive hypoxia-normoxia cycles for 1-4 days. Cells were then acid loaded with NH4Cl, and the rate of pHi recovery from acidosis was measured. Results: We found that the pHi recovery rate from acidosis was much slower in the IH group than in the room air (RA) group. When we treated cardiomyocytes with Na+-H+ exchange (NHE) inhibitors (Amiloride and HOE642) or Na+-free Tyrode solution during the recovery, there was no difference between RA and IH groups. We also found intracellular Na+ concentration ([Na+]i) significantly increased after IH exposure for 4 days. However, the phenomenon could be abolished by pretreatment with ROS inhibitors (SOD and phenanathroline), intracellular calcium chelator or Na+-Ca2+ exchange (NCX) inhibitor. Furthermore, the pHi recovery rate from acidosis became faster in the IH group than in the RA group when inhibition of NCX activity. Conclusions: These results suggest that IH would induce the elevation of ROS production. ROS then activates Ca2+-efflux mode of NCX and results in intracellular Na+ accumulation. The rise of [Na+]i further inhibits the activity of NHE-mediated acid extrusion and retards the rate of pHi recovery from acidosis during IH.


1996 ◽  
Vol 199 (8) ◽  
pp. 1781-1789
Author(s):  
H Moser ◽  
N Mair ◽  
F Fresser

1. In the stretch receptor neurones of the crayfish Astacus astacus, the intracellular pH (pHi), the intracellular Na+ concentration ([Na+]i) and the membrane potential (Em) were measured simultaneously using ion-selective and conventional microelectrodes. Normal Astacus saline (NAS), and salines containing varying amounts of Ca2+ (Ca2+-NAS) but of constant ionic strength, with Na+, Mg2+ or Ba2+ as substituting ions, were used to investigate the effects of extracellular Ca2+ concentration ([Ca2+]o) on pHi and pHi regulation, on [Na+]i and on Em. The maximum rate of pHi recovery was used as a measure of pHi regulation. Acid loads were imposed using the NH4+/NH3 rebound technique. 2. [Ca2+]o affected pHi, pHi regulation, [Na+]i and Em. The magnitudes of the effects were inversely related to [Ca2+]o and were specific to the ion used for [Ca2+]o substitution. 3. Compared with controls, increasing [Ca2+]o threefold (in exchange for Na+) elicited some alkalization, a 7 % faster maximum rate of pHi recovery and generally lower values of [Na+]i. 4. In low-Ca2+ or Ca2+-free NAS (substitutions by Na+ or Mg2+), pHi became more acid, the maximum rate of pHi recovery was reduced by up to 50 % and [Na+]i was generally higher. The effects were faster and larger at lower [Ca2+]o, and stronger with Na+ than with Mg2+ as the substituting ion. 5. In Ca2+-free NAS (Ca2+ substituted for by Ba2+), the effects on pHi, on the maximum rate of pHi recovery and on [Na+]i were generally small. In this respect, Ba2+ had similar physiological properties to Ca2+ and was almost equally effective. 6. Changes in Em, including rapid depolarizations and occasional burst activity in Ca2+-free NAS, indicate that alterations in the properties of the membrane, such as a change in its permeability or selectivity, are occurring. Measurements of [Na+]i support this view. In addition, Ba2+ per se induced a (small) depolarization, as shown when Ba2+ was present in NAS or in low-Ca2+ NAS. 7. Changes in [Ca2+]o affected [Na+]i. *[Na+]i is defined as [Na+]i determined at the onset of the maximum rate of pHi recovery, and the ratio *[Na+]i/[Na+]o at that instant was calculated. A linear relationship between the maximum rate of pHi recovery and the *[Na+]i/[Na+]o ratio was found, irrespective of the amount and of the ion species used for [Ca2+]o substitution. This is strong evidence that pHi and pHi regulation were indirectly affected by [Ca2+]o, which altered membrane properties and thus caused a change in [Na+]i. We could find no evidence for a direct contribution of [Ca2+]o to acid extrusion or to a direct modulatory action on the transport protein of the Na+/H+ antiporter.


Sign in / Sign up

Export Citation Format

Share Document