scholarly journals In Vitro Microtubule Dynamics Assays Using Dark-Field Microscopy

Author(s):  
Jeffrey O. Spector ◽  
Annapurna Vemu ◽  
Antonina Roll-Mecak
1953 ◽  
Vol 97 (5) ◽  
pp. 727-750 ◽  
Author(s):  
Keith R. Porter

The cytoplasmic ground substance of animal tissue cells grown in vitro has been found by electron microscopy to contain, as a part of its submicroscopic structure, a complex reticulum of strands, to be referred to as the endoplasmic reticulum. It has been found in all types of cells extensively studied. The components of this reticular system vary considerably in size and form, apparently in some relation to physiological changes in the cell. Thus in one cell of a culture colony it may be finely divided into strands or canaliculi, 50 to 100 mµ in diameter, whereas in an adjacent cell of the same type the components of the reticulum may be relatively coarse, 600 mµ in diameter, and vesiculated. The membrane, which can be shown to limit the system and separate it from the rest of the ground substance, is similar in thickness to the plasma membrane surrounding the cell. Photomicrographs of living cells taken by phase contrast and dark field microscopy define a structure of similar form and indicate that the reticulum of the electron microscope image has its equivalent in the living unit. Where its component units are sufficiently large, a structure of identical form can be resolved by light microscopy in cells stained with hematoxylin or with toluidine blue. This indicated that the endoplasmic reticulum is to be identified with the basophilic or chromophilic component (the ergastoplasm) of the cytoplasm and that such properties of this component as have been determined by cytochemical methods, such as a high RNA content, may be assigned to this "submicroscopic" system.


1980 ◽  
Vol 87 (3) ◽  
pp. 569-578 ◽  
Author(s):  
S Higashi-Fujime

Subcortical fibrils composed of bundles of F-actin filaments and endoplasmic filaments are responsible for endoplasmic streaming. It is reported here that these fibrils and filaments move actively in an artificial medium containing Mg-ATP and sucrose at neutral pH, when the medium was added to the cytoplasm squeezed out of the cell. The movement was observed by phase-contrast microscopy or dark-field microscopy and recorded on 16-mm film. Chains of chloroplasts linked by subcortical fibrils showed translational movement in the medium. Even after all chloroplasts and the endoplasm were washed away by perfusion with fresh medium, free fibrils and/or filaments (henceforth, referred to as fibers) not attached to chloroplasts continued travelling in the direction of the fiber orientation. Sometimes the fibers formed rings and rotated. Chloroplast chains and free fibers or rings continued moving for 5-30 min at about half the rate of the endoplasmic streaming in vivo. Calcium ion concentrations < 10(-7) M permitted movement to take place. Electron microscopy revealed that both fibers and rings were bundles of F-actin filaments that showed the same polarity after decoration with heavy meromyosin.


2018 ◽  
Vol 62 (7) ◽  
pp. e00419-18 ◽  
Author(s):  
Joris Koetsveld ◽  
Annemijn Manger ◽  
Dieuwertje Hoornstra ◽  
Ronald O. Draga ◽  
Anneke Oei ◽  
...  

ABSTRACT Borrelia miyamotoi is an emerging relapsing fever (RF) Borrelia species that is reported to cause human disease in regions in which Lyme borreliosis is endemic. We recently showed that B. miyamotoi tick isolates are resistant to amoxicillin in vitro; however, clinical isolates have not been studied. Therefore, our aim was to show the antimicrobial susceptibility of recently obtained clinical isolates of B. miyamotoi. A dilution series of various antibiotics was made in modified Kelly-Pettenkofer medium with 10% fetal calf serum. The susceptibilities of different B. miyamotoi clinical, B. miyamotoi tick, RF Borrelia, and Borrelia burgdorferi sensu lato isolates were tested by measuring MICs through colorimetric changes and by counting motile spirochetes by dark-field microscopy after 72 h of incubation. The ceftriaxone and azithromycin MIC ranges of the six B. miyamotoi clinical isolates tested were 0.03 to 0.06 mg/liter and 0.0016 to 0.0032 mg/liter, respectively. These values are similar to MICs for RF Borrelia strains and B. miyamotoi tick isolates. All tested RF Borrelia strains were susceptible to doxycycline (microscopic MIC range, 0.0625 to 0.25 mg/liter). In contrast to the MICs of the tested B. burgdorferi sensu lato strains and in line with our previous findings, the amoxicillin MICs (range, 8 to 32 mg/liter) of all RF Borrelia strains, including B. miyamotoi clinical isolates, were above the clinical breakpoint for resistance (≤4 mg/liter). Clinical isolates of B. miyamotoi are highly susceptible to doxycycline, azithromycin, and ceftriaxone in vitro. Interestingly, as described previously for tick isolates, amoxicillin shows poor in vitro activity against B. miyamotoi clinical isolates.


2021 ◽  
Vol 102 (4) ◽  
pp. 501-509
Author(s):  
G A Timerbulatova ◽  
P D Dunaev ◽  
A M Dimiev ◽  
G F Gabidinova ◽  
N N Khaertdinov ◽  
...  

Aim. Comparative assessment of the effect of fibrous materials on cell cultures RAW264.7 and BEAS-2B. Methods. The effects of various fibrous materials single-walled carbon nanotubes of two types (SWCNT-1 and SWCNT-2), differing in morphological characteristics, and chrysotile asbestos as a positive control was assessed on two cell lines macrophages RAW 264.7 and human bronchial epithelium BEAS-2B cells. The studied materials concentration range for experiments on cells was selected taking into account the SWCNT content in the air of the working area and the subsequent modeling of SWCNT deposition in the human respiratory tract. Suspensions of the studied materials were prepared based on cell culture media by ultrasonication. Cytotoxicity assessment after 48 hours of incubation was performed by using the MTS colorimetric assay. The expression level of apoptosis markers was assessed by immunoblotting using the corresponding monoclonal antibodies. Visualization of SWCNT-1, SWCNT-2 and chrysotile asbestos in BEAS-2B cell cultures was carried out by improved dark-field microscopy. Results. According to dark-field microscopy, all the studied fibrous materials were found on the surface or cytoplasm of the cells. SWCNT and chrysotile asbestos did not have a direct cytotoxic effect in the MTS assay and did not induce apoptosis according to the results of Western blotting in cell cultures of RAW264.7 macrophages and BEAS-2B bronchial epithelium. In the cells of the bronchial epithelium (BEAS-2B) that showed greater sensitivity, a slight increase in the expression of pro-apoptotic protein PARP, which was more pronounced for shorter SWCNT-2, was revealed. Conclusion. Both types of SWCNTs, despite the differences in morphological characteristics, demonstrated similar effects in in vitro experiments; this result, with its further verification, can have an important practical application in justifying approaches to determining the safety criteria for single-walled carbon nanotubes as a class of nanomaterials of the same type.


1976 ◽  
Vol 4 (4) ◽  
pp. 360-371
Author(s):  
P L Sandok ◽  
S T Knight ◽  
H M Jenkin

Treponema pallidum (Nichols virulent) was incubated with and without cells in cell culture medium reduced to -275 mV Ecal, pH 7.3, under deoxygenated conditions. Five to ten percent of the treponemes attached to cells and remained motile for at least 120 h in cell-treponeme systems of co-incubation. Virulent treponemes could be detected after 120 to 144 h in the supernatant fluids of cell-treponeme co-incubation cultures and in cell-free tubes containing medium harvested from aerobically cultivated mammalian cells. Medium supplemented with ox serum ultrafiltrate, pyruvate, and sodium thioglycolate and gas mixtures containing H2 and CO2 enhanced treponemal survival. Increases in treponemal numbers were observed using dark-field microscopy but were not substantiated using the rabbit lesion test. Continuous passage of the treponeme was not achieved in vitro.


Author(s):  
J. Langmore ◽  
M. Isaacson ◽  
J. Wall ◽  
A. V. Crewe

High resolution dark field microscopy is becoming an important tool for the investigation of unstained and specifically stained biological molecules. Of primary consideration to the microscopist is the interpretation of image Intensities and the effects of radiation damage to the specimen. Ignoring inelastic scattering, the image intensity is directly related to the collected elastic scattering cross section, σɳ, which is the product of the total elastic cross section, σ and the eficiency of the microscope system at imaging these electrons, η. The number of potentially bond damaging events resulting from the beam exposure required to reduce the effect of quantum noise in the image to a given level is proportional to 1/η. We wish to compare η in three dark field systems.


Author(s):  
William Krakow

Tilted beam dark-field microscopy has been applied to atomic structure determination in perfect crystals, several synthesized molecules with heavy atcm markers and in the study of displaced atoms in crystals. Interpretation of this information in terms of atom positions and atom correlations is not straightforward. Therefore, calculated dark-field images can be an invaluable aid in image interpretation.


Author(s):  
Sumei Li ◽  
Jifeng Zhang ◽  
Jiaqi Zhang ◽  
Jiong Li ◽  
Longfei Cheng ◽  
...  

Aims: Our work aims to revealing the underlying microtubule mechanism of neurites outgrowth during neuronal development, and also proposes a feasible intervention pathway for reconstructing neural network connections after nerve injury. Background: Microtubule polymerization and severing are the basis for the neurite outgrowth and branch formation. Collapsin response mediator protein 2 (CRMP2) regulates axonal growth and branching as a binding partner of the tubulin heterodimer to promote microtubule assembly. And spastin participates in the growth and regeneration of neurites by severing microtubules into small segments. However, how CRMP2 and spastin cooperate to regulate neurite outgrowth by controlling the microtubule dynamics needs to be elucidated. Objective: To explore whether neurite outgrowth was mediated by coordination of CRMP2 and spastin. Method: Hippocampal neurons were cultured in vitro in 24-well culture plates for 4 days before being used to perform the transfection. Calcium phosphate was used to transfect the CRMP2 and spastin constructs and their control into the neurons. An interaction between CRMP2 and spastin was examined by using pull down, CoIP and immunofluorescence colocalization assays. And immunostaining was also performed to determine the morphology of neurites. Result: We first demonstrated that CRMP2 interacted with spastin to promote the neurite outgrowth and branch formation. Furthermore, our results identified that phosphorylation modification failed to alter the binding affinities of CRMP2 for spastin, but inhibited their binding to microtubules. CRMP2 interacted with the MTBD domain of spastin via its C-terminus, and blocking the binding sites of them inhibited the outgrowth and branch formation of neurites. In addition, we confirmed one phosphorylation site S210 at spastin in hippocampal neurons and phosphorylation spastin at site S210 promoted the neurite outgrowth but not branch formation by remodeling microtubules. Conclusion: Taken together, our data demonstrated that the interaction of CRMP2 and spastin is required for neurite outgrowth and branch formation and their interaction is not regulated by their phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document