Single-Cell Analysis of BRAFV600E and NRASQ61R Mutation Status in Melanoma Cell Lines as Method Generation for Circulating Melanoma Cells

Author(s):  
Joseph W. Po ◽  
Yafeng Ma ◽  
Alison W. S. Luk ◽  
David Lynch ◽  
Bavanthi Balakrishnar ◽  
...  
2021 ◽  
Vol 22 (2) ◽  
pp. 537
Author(s):  
Paula Wróblewska-Łuczka ◽  
Aneta Grabarska ◽  
Magdalena Florek-Łuszczki ◽  
Zbigniew Plewa ◽  
Jarogniew J. Łuszczki

(1) Cisplatin (CDDP) is used in melanoma chemotherapy, but it has many side effects. Hence, the search for natural substances that can reduce the dose of CDDP, and CDDP-related toxicity, is highly desired. Coumarins have many biological properties, including anticancer and antiproliferative effects. (2) An in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay on two human melanoma cell lines (FM55P and FM55M2) examined the antitumor properties of CDDP and five naturally occurring coumarins (osthole, xanthotoxin, xanthotoxol, isopimpinellin, and imperatorin). The antiproliferative effects produced by combinations of CDDP with the coumarins were assessed using type I isobolographic analysis. (3) The most potent anticancer properties of coumarins were presented by osthole and xanthotoxol. These compounds were characterized by the lowest median inhibitory concentration (IC50) values relative to the FM55P and FM55M2 melanoma cells. Isobolographic analysis showed that for both melanoma cell lines, the combination of CDDP and osthole exerted synergistic and additive interactions, while the combination of CDDP and xanthotoxol exerted additive interactions. Combinations of CDDP with xanthotoxin, isopimpinellin, and imperatorin showed antagonistic and additive interactions in two melanoma cell lines. (4) The combination of CDDP and osthole was characterized by the most desirable synergistic interaction. Isobolographic analysis allows the selection of potential candidates for cancer drugs among natural substances.


1998 ◽  
Vol 30 (3) ◽  
pp. 189-194 ◽  
Author(s):  
Volker Enzmann ◽  
Frank Faude ◽  
Leon Kohen ◽  
Peter Wiedemann

2020 ◽  
Vol MA2020-02 (44) ◽  
pp. 2825-2825
Author(s):  
Miyu Fukaya ◽  
Tomohiro Hatakenaka ◽  
Nahoko Matsuki ◽  
Seiya Minagawa ◽  
Mikako Saito

Blood ◽  
1991 ◽  
Vol 78 (3) ◽  
pp. 609-615 ◽  
Author(s):  
GC Baldwin ◽  
DW Golde ◽  
GF Widhopf ◽  
J Economou ◽  
JC Gasson

Abstract Hematopoietic growth factor receptors are present on cells of normal nonhematopoietic tissues such as endothelium and placenta. We previously demonstrated functional human granulocyte-macrophage colony- stimulating factor (GM-CSF) receptors on small cell carcinoma of the lung cell lines, and others have reported that certain solid tumor cell lines respond to GM-CSF in clonogenic assays. In the current study, we examine human melanoma cell lines and fresh specimens of melanoma to determine whether they have functional GM-CSF receptors. Scatchard analyses of 125I-GM-CSF equilibrium binding to melanoma cell lines showed a mean of 542 +/- 67 sites per cell with a kd of 0.72 +/- 0.14 nmol/L. Cross-linking studies in the melanoma cell line, M14, showed a major GM-CSF receptor species of 84,000 daltons. Under the conditions tested, the M14 cells did not have a proliferative response to GM-CSF in vitro, nor was any induction of primary response genes detected by Northern analysis in response to GM-CSF. Studies to determine internal translocation of the receptor-ligand complex indicated less than 10% of the 125I-GM-CSF internalized was specifically bound to receptors. Primary melanoma cells from five surgical specimens had GM-CSF receptors; Scatchard analysis was performed on one sample, showing 555 sites/cell with a kd of 0.23 nmol/L. These results indicate that human tumor cells may express a low-affinity GM-CSF receptor protein that localizes to the cell surface and binds ligand, but lacks functional components or accessory factors needed to transduce a signal.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e13549-e13549
Author(s):  
Gregory B. Lesinski ◽  
Jennifer Yang ◽  
Matthew A Bill ◽  
Yosef Landesman ◽  
Sharon Shacham ◽  
...  

e13549 Background: Inhibition of nuclear export can promote re-activation of tumor suppressor pathways. CRM1 (chromosomal regional maintenance 1) or XPO1 (exportin 1) is the major protein that mediates nuclear export. We hypothesized that CRM1 mediated nuclear export represents a novel therapeutic target that can be manipulated to inhibit melanoma cell survival. Methods: The growth inhibitory and pro-apoptotic effects of KPT-185, KPT-276 and KPT-330, small molecules selective inhibitor of nuclear export (SINE) were evaluated in human melanoma cell lines using an MTT assay and Annexin V/PI staining, respectively. Fluorescence microscopy and immunoblots were used to assess nuclear accumulation of tumor suppressor proteins. The trans-isomer of KPT-185 and DMSO (vehicle) were used as a negative controls in all assays. The pharmacokinetic (PK) profile of all compounds was evaluated in mice. Results: CRM1 protein was highly expressed in human melanoma cell lines with diverse molecular profiles (i.e., B-Raf, NRAS, p53). KPT-SINE inhibited melanoma cell growth in a concentration-dependent manner and induced apoptosis at nanomolar concentrations. Importantly, there was no evidence that B-Raf V600 mutational status influenced melanoma cell response to these agents. Nuclear accumulation and/or induction of p53, p21, FOXO3a, STAT1 and BAD, and reduction of MCL-1 occurred in melanoma cells at time points prior to apoptosis as shown by increase in cleaved PARP and caspase 3 levels. PK studies were conducted in mice following oral administration of 10 mg/kg, to guide drug selection for our ongoing efficacy studies in murine melanoma models. KPT-185 showed limited bioavailability and systemic exposure, while KPT-276 and KPT-330 showed >50% bioavailability reaching Cmax >5µM. Conclusions: This study represents the first report of CRM1 inhibition in melanoma. These data indicate that the novel SINE compounds can effectively inhibit CRM1-mediated nuclear export and induce apoptosis in melanoma cells. KPT-330 is currently under development as orally bioavailable, small molecule inhibitors for a human clinical trial.


1996 ◽  
Vol 109 (7) ◽  
pp. 1957-1964 ◽  
Author(s):  
M. Goebeler ◽  
D. Kaufmann ◽  
E.B. Brocker ◽  
C.E. Klein

Recent evidence indicates that CD44, a multifunctional adhesion receptor involved in cell-cell as well as in cell-matrix interactions, plays an important role in local progression and metastasis of malignant tumors. We have studied a set of human melanoma cell lines differing in their metastatic potential in nude mice as well as in normal melanocytes for changes in CD44 expression and function. All melanocytes and melanoma cell lines tested highly expressed the CD44 standard form (CD44s, 85 kDa) but variants at low levels only. With respect to one of the CD44-associated functions primarily involved in tumor progression we found that two highly metastatic tumor cell lines, MV3 and BLM, showed fivefold higher migration rates towards hyaluronate than melanomas with low metastatic potential and normal melanocytes. Moreover, the highly metastatic cell lines expressed four- to sixfold higher levels of the CD44 epitope involved in hyaluronic acid-binding (monoclonal antibody Hermes-1) than less aggressive melanomas and melanocytes. Hermes-1 efficiently blocked haptotaxis to hyaluronate, supporting the functional relevance of this epitope. In contrast, expression levels of other CD44s epitopes recognized by seven different anti-CD44 monoclonal antibodies were unchanged, suggesting that the migratory behaviour of the cells depends on the formation of the hyaluronate-binding Hermes-1 epitope rather than on the overall CD44s surface expression, which was virtually identical in all melanoma and melanocyte cell lines tested. Differences in the accessibility of the hyaluronate-binding epitope defined by Hermes-1 correlated with the phosphorylation state of CD44s, probably reflecting different activation states of the receptor. Furthermore, immunoprecipitation and pulse/chase studies revealed a three- to fivefold increase in CD44 synthesis in the highly aggressive melanoma cells as compared to the other cell lines and the melanocytes, indicating a reduction of CD44 half-life and up-regulation of turnover. Moreover, highly aggressive melanoma cell lines were found to shed significant amounts of CD44 from the cell surface and to secrete its ligand hyaluronic acid, which may refer to an “autocrine' mechanism mediating melanoma cell motility.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4249-4249
Author(s):  
Amit Kumar Mitra ◽  
Ujjal Mukherjee ◽  
Taylor Harding ◽  
Holly Stessman ◽  
Ying Li ◽  
...  

Abstract Multiple myeloma (MM) is characterized by significant genetic diversity at subclonal levels that likely plays a defining role in the heterogeneity of tumor progression, clinical aggressiveness and drug sensitivity. Such heterogeneity is a driving factor in the evolution of MM, from founder clones through outgrowth of subclonal fractions. DNA Sequencing studies on MM samples have indeed demonstrated such heterogeneity in subclonal architecture at diagnosis based on recurrent mutations in pathologically relevant genes that may ultimately to lead to relapse. However, no study so far has reported a predictive gene expression signature that can identify, distinguish and quantify drug sensitive and drug-resistant subpopulations within a bulk population of myeloma cells. In recent years, our laboratory has successfully developed a gene expression profile (GEP)-based signature that could not only distinguish drug response of MM cell lines, but also was effective in stratifying patient outcomes when applied to GEP profiles from MM clinical trials using proteasome inhibitors (PI) as chemotherapeutic agents. Further, we noted myeloma cell lines that responded to the drug often contained residual sub-population of cells that did not respond, and likely were selectively propagated during drug treatment in vitro, and in patients. In this study, we performed targeted qRT-PCR analysis of single cells using a gene panel that included PI sensitivity genes and gene signatures that could discriminate between low and high-risk myeloma followed by intensive bioinformatics and statistical analysis for the classification and prediction of PI response in individual cells within bulk multiple myeloma tumors. Fluidigm's C1 Single-Cell Auto Prep System was used to perform automated single-cell capture, processing and cDNA synthesis on 576 pre-treatment cells from 12 cell lines representing a wide range of PI-sensitivity and 370 cells from 7 patient samples undergoing PI treatment followed by targeted gene expression profiling of single cells using automated, high-throughput on-chip qRT-PCR analysis using 96.96 Dynamic Array IFCs on the BioMark HD System. Probability of resistance for each individual cell was predicted using a pipeline that employed the machine learning methods Random Forest, Support Vector Machine (radial and sigmoidal), LASSO and kNN (k Nearest Neighbor) for making single-cell GEP data-driven predictions/ decisions. The weighted probabilities from each of the algorithms were used to quantify resistance of each individual cell and plotted using Ensemble forecasting algorithm. Using our drug response GEP signature at the single cell level, we could successfully identify distinct subpopulations of tumor cells that were predicted to be sensitive or resistant to PIs. Subsequently, we developed a R Statistical analysis package (http://cran.r-project.org), SCATTome (Single Cell Analysis of Targeted Transcriptome), that can restructure data obtained from Fluidigm qPCR analysis run, filter missing data, perform scaling of filtered data, build classification models and successfully predict drug response of individual cells and classify each cell's probability of response based on the targeted transcriptome. We will present the program output as graphical displays of single cell response probabilities. This package provides a novel classification method that has the potential to predict subclonal response to a variety of therapeutic agents. Disclosures Kumar: Skyline: Consultancy, Honoraria; BMS: Consultancy; Onyx: Consultancy, Research Funding; Sanofi: Consultancy, Research Funding; Janssen: Consultancy, Research Funding; Novartis: Research Funding; Takeda: Consultancy, Research Funding; Celgene: Consultancy, Research Funding.


2018 ◽  
Author(s):  
Su Wu ◽  
Anders M. Näär

AbstractWhile investigating the role played by de novo lipid (DNL) biosynthesis in cancer cells, we sought a medium condition that would support cell proliferation without providing any serum lipids. Here we report that a defined serum free cell culture medium condition containing insulin, transferrin and selenium (ITS) supports controlled study of transcriptional regulation of de novo fatty acid (DNFA) production and de novo cholesterol synthesis (DNCS) in melanoma cell lines. This lipid-free ITS medium is able to support continuous proliferation of several melanoma cell lines that utilize DNL to support their lipid requirements. We show that the ITS medium stimulates gene transcription in support of both DNFA and DNCS, specifically mediated by SREBP1/2 in melanoma cells. We further found that the ITS medium promoted SREBP1 nuclear localization and occupancy on DNFA gene promoters. Our data show clear utility of this serum and lipid-free medium for melanoma cancer cell culture and lipid-related areas of investigation.


2019 ◽  
Vol 6 (4) ◽  
pp. 47-57
Author(s):  
A. A. Vartanian ◽  
O. S. Burova ◽  
Kh. S. Vishnyakova ◽  
I. V. Samoylenko ◽  
V. A. Misyurin ◽  
...  

Background. Activating mutations in the BRAF gene leads to a constitutive activation of the MAPK signaling. The highly selective BRAFV600E inhibitor, vemurafenib, improves the overall survival of BRAF-mutant melanoma patients. However, despite the excellent results of response rate, the average duration of the response was short and acquired resistance develops in most BRAF mutated melanoma patients within a few months. Objective: to derive melanoma cell lines from surgical species of patients with BRAF mutant melanomas resistant to vemurafenib and to elucidate the mechanisms involved in acquired drug resistance.Materials and methods. Mel Ki and Mel F1702 melanoma cells were obtained from metastases of disseminated melanoma patients with BRAFV600E mutation. 2D tumor cell culture, MTT test, immunicytochemistry, flow cytometry, real-time polimerase chain reaction and osteogenic and adipocytic differentiation were used in the study.Results. We have derived two melanoma cell lines Mel Ki and Mel F1702 from tumor samples of patients with BRAFV600E mutation resistant to vemurafenib. These cells were homogenous and had fibroblastic morphology. The IC50 values for Mel Ki and Mel F1702 were 4.7 and 6.3 μM, respectively. The expression of cancer-testis antigens was not detected in both types of cells suggesting the stemness of Mel Ki and Mel F1702 melanoma cells. The immunophenotypic profile of the vemurafenib resistsant melanoma cells showed the expression of typical mesenchymal stem cells markers such as CD90, CD105 and CD44. In addition, we found that the melanoma cell lines derived from tumor resistant to vemurafenib differentiated into osteoblastand adipocyte-like cells. Conclusion. In this study we are offering an experimental evidence of the phenotypic transition of the vemurafenib-resistant melanoma cells into mesenchymal stem-like cells.


Sign in / Sign up

Export Citation Format

Share Document