Macrolipidomic Profiling of Vegetable Oils: The Analysis of Sunflower Oils with Different Oleic Acid Content

2021 ◽  
pp. 161-173
Author(s):  
Juan J. Aristizabal-Henao ◽  
Ken D. Stark
Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1245
Author(s):  
Naoufal Lakhssassi ◽  
Valéria Stefania Lopes-Caitar ◽  
Dounya Knizia ◽  
Mallory A. Cullen ◽  
Oussama Badad ◽  
...  

Soybean is the second largest source of oil worldwide. Developing soybean varieties with high levels of oleic acid is a primary goal of the soybean breeders and industry. Edible oils containing high level of oleic acid and low level of linoleic acid are considered with higher oxidative stability and can be used as a natural antioxidant in food stability. All developed high oleic acid soybeans carry two alleles; GmFAD2-1A and GmFAD2-1B. However, when planted in cold soil, a possible reduction in seed germination was reported when high seed oleic acid derived from GmFAD2-1 alleles were used. Besides the soybean fatty acid desaturase (GmFAD2-1) subfamily, the GmFAD2-2 subfamily is composed of five members, including GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E. Segmental duplication of GmFAD2-1A/GmFAD2-1B, GmFAD2-2A/GmFAD2-2C, GmFAD2-2A/GmFAD2-2D, and GmFAD2-2D/GmFAD2-2C have occurred about 10.65, 27.04, 100.81, and 106.55 Mya, respectively. Using TILLING-by-Sequencing+ technology, we successfully identified 12, 8, 10, 9, and 19 EMS mutants at the GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E genes, respectively. Functional analyses of newly identified mutants revealed unprecedented role of the five GmFAD2-2A, GmFAD2-2B, GmFAD2-2C, GmFAD2-2D, and GmFAD2-2E members in controlling the seed oleic acid content. Most importantly, unlike GmFAD2-1 members, subcellular localization revealed that members of the GmFAD2-2 subfamily showed a cytoplasmic localization, which may suggest the presence of an alternative fatty acid desaturase pathway in soybean for converting oleic acid content without substantially altering the traditional plastidial/ER fatty acid production.


Crop Science ◽  
2001 ◽  
Vol 41 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Yolanda López ◽  
Olin D. Smith ◽  
Scott A. Senseman ◽  
William L. Rooney

Helia ◽  
2015 ◽  
Vol 38 (62) ◽  
Author(s):  
Claudio Ferfuia ◽  
Maurizio Turi ◽  
Gian Paolo Vannozzi

AbstractHigh temperature enhances the oleic acid content in the oil of normal cultivars but conflicting results are reported on temperature effects on oleic acid content in HO cultivars: either no effect or an increase in oleic acid content with temperature. To investigate the effects of temperature on HO genotypes under natural field conditions, a three-year field trial was conducted using two sowing dates and three HO genotypes (two inbred lines and one hybrid). To compare our results with previous works, growing degree-days (GDD) were computed (base temperature=6°C). GDD accumulated during the “flowering – 25 days after flowering” period influenced fatty acid composition of seed. Oleic and linoleic acid contents were affected by accumulated GDD in two HO genotypes (one inbred line and the hybrid). There was an increase of about 3% in oleic acid content as response to more high GDD accumulated. Their content was not modified by GDD in the other inbred line. There was a genotype×environment interaction that we suppose depending on modifier genes. These genetic factors affected oleic acid content. This indicated the importance of breeding targeted to select hybrids with a stable oleic acid content and higher than 90%. Saturated fatty acids (palmitic and stearic) were also influenced by temperature, and there was genetic variability among genotypes.


Agronomy ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 222 ◽  
Author(s):  
Qinfu Sun ◽  
Jueyi Xue ◽  
Li Lin ◽  
Dongxiao Liu ◽  
Jian Wu ◽  
...  

Rapeseed (Brassica napus L.) with substantial lipid and oleic acid content is of great interest to rapeseed breeders. Overexpression of Glycine max transcription factors Dof4 and Dof11 increased lipid accumulation in Arabidopsis and microalgae, in addition to modifying the quantity of certain fatty acid components. Here, we report the involvement of GmDof4 and GmDof11 in regulating fatty acid composition in rapeseeds. Overexpression of GmDof4 and GmDof11 in rapeseed increased oleic acid content and reduced linoleic acid and linolenic acid. Both qPCR and the yeast one-hybrid assay indicated that GmDof4 activated the expression of FAB2 by directly binding to the cis-DNA element on its promoters, while GmDof11 directly inhibited the expression of FAD2. Thus, GmDof4 and GmDof11 might modify the oleic acid content in rapeseed by directly regulating the genes that are associated with fatty acid biosynthesis.


2008 ◽  
Vol 105 (37) ◽  
pp. 13811-13816 ◽  
Author(s):  
S. Teres ◽  
G. Barcelo-Coblijn ◽  
M. Benet ◽  
R. Alvarez ◽  
R. Bressani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document