Flow Through Conical Converging Dies with Hydrodynamic Lubrication Treated as an Adiabatic Process

Author(s):  
Betzalel Avitzur
1963 ◽  
Vol 16 (4) ◽  
pp. 595-619 ◽  
Author(s):  
G. I. Taylor

The conditions which determine the existence and position of cavitation in the narrow passages of hydrodynamically lubricated bearings have been assumed to be the same as those which produce cavitation bubbles, namely a lowering of pressure below that at which gas separates out of fluid. This assumption enables certain predictions to be made which in some cases are verified, but it does not provide a physical description of the interface between oil and air. Theoretical analysis of the situation seems to be beyond our present capacity, and in none of the experiments so far published has it been possible to measure both the most important relevant data, namely the minimum clearance and the oil flow through it.A method is described here which enables this to be done. It turns out that two physically different kinds of cavitation can occur. One of these is well described by the existing theory and assumption. Surface tension plays no part in it, and in most text books on hydrodynamic lubrication is not even mentioned. The other kind, which is akin to hydrodynamic separation rather than bubble cavitation, depends essentially on surface tension. Both kinds appear clearly in published photographs taken through transparent bearings, but the experimenters do not seem to have distinguished between them.The reason why surface tension, which is only able to supply stresses that are exceedingly small compared with the pressure variation in the fluid itself, may have a large effect on the flow can be understood by considering the flow of a viscous fluid in a tube when blown out by air pressure applied at one end. For any given length of fluid the rate of outflow depends almost entirely on the pressure applied, the surface tension force being negligible; but the amount of fluid left in the tube after the air column has reached the end depends essentially on surface tension.


Author(s):  
Richard L. Leino ◽  
Jon G. Anderson ◽  
J. Howard McCormick

Groups of 12 fathead minnows were exposed for 129 days to Lake Superior water acidified (pH 5.0, 5.5, 6.0 or 6.5) with reagent grade H2SO4 by means of a multichannel toxicant system for flow-through bioassays. Untreated water (pH 7.5) had the following properties: hardness 45.3 ± 0.3 (95% confidence interval) mg/1 as CaCO3; alkalinity 42.6 ± 0.2 mg/1; Cl- 0.03 meq/1; Na+ 0.05 meq/1; K+ 0.01 meq/1; Ca2+ 0.68 meq/1; Mg2+ 0.26 meq/1; dissolved O2 5.8 ± 0.3 mg/1; free CO2 3.2 ± 0.4 mg/1; T= 24.3 ± 0.1°C. The 1st, 2nd and 3rd gills were subsequently processed for LM (methacrylate), TEM and SEM respectively.Three changes involving chloride cells were correlated with increasing acidity: 1) the appearance of apical pits (figs. 2,5 as compared to figs. 1, 3,4) in chloride cells (about 22% of the chloride cells had pits at pH 5.0); 2) increases in their numbers and 3) increases in the % of these cells in the epithelium of the secondary lamellae.


Author(s):  
Tian-Chyi Yeh ◽  
Raziuddin Khaleel ◽  
Kenneth C. Carroll
Keyword(s):  

2020 ◽  
Vol 139 ◽  
pp. 213-221
Author(s):  
C Birkett ◽  
R Lipscomb ◽  
T Moreland ◽  
T Leeds ◽  
JP Evenhuis

Flavobacterium columnare immersion challenges are affected by water-related environmental parameters and thus are difficult to reproduce. Whereas these challenges are typically conducted using flow-through systems, use of a recirculating challenge system to control environmental parameters may improve reproducibility. We compared mortality, bacterial concentration, and environmental parameters between flow-through and recirculating immersion challenge systems under laboratory conditions using 20 rainbow trout families. Despite identical dose concentration (1:75 dilution), duration of challenge, lot of fish, and temperature, average mortality in the recirculating system (42%) was lower (p < 0.01) compared to the flow-through system (77%), and there was low correlation (r = 0.24) of family mortality. Mean days to death (3.25 vs. 2.99 d) and aquaria-to-aquaria variation (9.6 vs. 10.4%) in the recirculating and flow-through systems, respectively, did not differ (p ≥ 0.30). Despite 10-fold lower water replacement rate in the recirculating (0.4 exchanges h-1) compared to flow-through system (4 exchanges h-1), differences in bacterial concentration between the 2 systems were modest (≤0.6 orders of magnitude) and inconsistent throughout the 21 d challenge. Compared to the flow-through system, dissolved oxygen during the 1 h exposure and pH were greater (p ≤ 0.02), and calcium and hardness were lower (p ≤ 0.03), in the recirculating system. Although this study was not designed to test effects of specific environmental parameters on mortality, it demonstrates that the cumulative effects of these parameters result in poor reproducibility. A recirculating immersion challenge model may be warranted to empirically identify and control environmental parameters affecting mortality and thus may serve as a more repeatable laboratory challenge model.


Sign in / Sign up

Export Citation Format

Share Document