Role of Spontaneous Activity in the Maturation of GABAergic Synapses in Embryonic Spinal Circuits

Author(s):  
Carlos E. Gonzalez-Islas ◽  
Peter Wenner
1989 ◽  
Vol 3 (1) ◽  
pp. 5-9 ◽  
Author(s):  
Janet Cowan

Often through the course of work with a patient, issues arise which challenge one's role as a music therapist, and which lead one to question the limits of the experiences being offered to the patient. In this paper I describe my work with a woman who initially avoided and resisted shared music-making, and who gradually became more able to be involved in spontaneous activity. I tried to find ways of understanding the issues at the root of our relationship, in order to build on the musical interactions. From this case, I intend to illustrate the deeper questions which, I believe, are pertinent to be asked more generally about the limitations attending the role of the music therapist.


2020 ◽  
Author(s):  
Yixiang Wang ◽  
Maya Sanghvi ◽  
Alexandra Gribizis ◽  
Yueyi Zhang ◽  
Lei Song ◽  
...  

SummaryIn the developing auditory system, spontaneous activity generated in the cochleae propagates into the central nervous system to promote circuit formation before hearing onset. Effects of the evolving peripheral firing pattern on spontaneous activity in the central auditory system are not well understood. Here, we describe the wide-spread bilateral coupling of spontaneous activity that coincides with the period of transient efferent modulation of inner hair cells from the medial olivochlear (MOC) system. Knocking out the α9/α10 nicotinic acetylcholine receptor, a requisite part of the efferent cholinergic pathway, abolishes these bilateral correlations. Pharmacological and chemogenetic experiments confirm that the MOC system is necessary and sufficient to produce the bilateral coupling. Moreover, auditory sensitivity at hearing onset is reduced in the absence of pre-hearing efferent modulation. Together, our results demonstrate how ascending and descending pathways collectively shape spontaneous activity patterns in the auditory system and reveal the essential role of the MOC efferent system in linking otherwise independent streams of bilateral spontaneous activity during the prehearing period.


1975 ◽  
Vol 38 (6) ◽  
pp. 1524-1540 ◽  
Author(s):  
A. W. Goodwin ◽  
G. H. Henry

Following our earlier study on direction selectivity in simple cells (5), the present findings on complex cells made it possible to compare the direction selectivity in the two types of striate cell. Common properties were found in the dimension of the smallest stimulus displacement giving a direction-selective response and in the role of inhibition in suppressing the response as the stimulus moved in the nonpreferred direction. However, the effectiveness of this inhibition varied in the two cell types since it suppressed both driven and spontaneous activity in the simple cell, but only driven firing in the complex cell. It is argued that direction selectivity must enter the response before the complex cell if the inhibition responsible for it's generation fails to influence the spontaneous activity of the cell. The consequences of this finding are considered in the terms of parallel or sequential processing of visual information in striate cortex.


2006 ◽  
Vol 95 (5) ◽  
pp. 2866-2877 ◽  
Author(s):  
Brian Hoffpauir ◽  
Emily McMains ◽  
Evanna Gleason

Nitric oxide (NO) is generated by multiple cell types in the vertebrate retina, including amacrine cells. We investigate the role of NO in the modulation of synaptic function using a culture system containing identified retinal amacrine cells. We find that moderate concentrations of NO alter GABAA receptor function to produce an enhancement of the GABA-gated current. Higher concentrations of NO also enhance GABA-gated currents, but this enhancement is primarily due to a substantial positive shift in the reversal potential of the current. Several pieces of evidence, including a similar effect on glycine-gated currents, indicate that the positive shift is due to an increase in cytosolic Cl−. This change in the chloride distribution is especially significant because it can invert the sign of GABA- and glycine-gated voltage responses. Furthermore, current- and voltage-clamp recordings from synaptic pairs of GABAergic amacrine cells demonstrate that NO transiently converts signaling at GABAergic synapses from inhibition to excitation. Persistence of the NO-induced shift in ECl− in the absence of extracellular Cl− indicates that the increase in cytosolic Cl− is due to release of Cl− from an internal store. An NO-dependent release of Cl− from an internal store is also demonstrated for rat hippocampal neurons indicating that this mechanism is not restricted to the avian retina. Thus signaling in the CNS can be fundamentally altered by an NO-dependent mobilization of an internal Cl− store.


2011 ◽  
Vol 106 (2) ◽  
pp. 641-651 ◽  
Author(s):  
Emily McMains ◽  
Evanna Gleason

Nitric oxide (NO) synthase-expressing neurons are found throughout the vertebrate retina. Previous work by our laboratory has shown that NO can transiently convert inhibitory GABAergic synapses onto cultured retinal amacrine cells into excitatory synapses by releasing Cl− from an internal store in the postsynaptic cell. The mechanism underlying this Cl− release is currently unknown. Because transport of Cl− across internal membranes can be coupled to proton flux, we asked whether protons could be involved in the NO-dependent release of internal Cl−. Using pH imaging and whole cell voltage-clamp recording, we addressed the relationship between cytosolic pH and cytosolic Cl− in cultured retinal amacrine cells. We found that NO reliably produces a transient decrease in cytosolic pH. A physiological link between cytosolic pH and cytosolic Cl− was established by demonstrating that shifting cytosolic pH in the absence of NO altered cytosolic Cl− concentrations. Strong buffering of cytosolic pH limited the ability of NO to increase cytosolic Cl−, suggesting that cytosolic acidification is involved in generating the NO-dependent elevation in cytosolic Cl−. Furthermore, disruption of internal proton gradients also reduced the effects of NO on cytosolic Cl−. Taken together, these results suggest a cytosolic environment where proton and Cl− fluxes are coupled in a dynamic and physiologically meaningful way.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 830
Author(s):  
Wataru Minoshima ◽  
Kyoko Masui ◽  
Tomomi Tani ◽  
Yasunori Nawa ◽  
Satoshi Fujita ◽  
...  

The excitatory synaptic transmission is mediated by glutamate (GLU) in neuronal networks of the mammalian brain. In addition to the synaptic GLU, extra-synaptic GLU is known to modulate the neuronal activity. In neuronal networks, GLU uptake is an important role of neurons and glial cells for lowering the concentration of extracellular GLU and to avoid the excitotoxicity. Monitoring the spatial distribution of intracellular GLU is important to study the uptake of GLU, but the approach has been hampered by the absence of appropriate GLU analogs that report the localization of GLU. Deuterium-labeled glutamate (GLU-D) is a promising tracer for monitoring the intracellular concentration of glutamate, but physiological properties of GLU-D have not been studied. Here we study the effects of extracellular GLU-D for the neuronal activity by using primary cultured rat hippocampal neurons that form neuronal networks on microelectrode array. The frequency of firing in the spontaneous activity of neurons increased with the increasing concentration of extracellular GLU-D. The frequency of synchronized burst activity in neurons increased similarly as we observed in the spontaneous activity. These changes of the neuronal activity with extracellular GLU-D were suppressed by antagonists of glutamate receptors. These results suggest that GLU-D can be used as an analog of GLU with equivalent effects for facilitating the neuronal activity. We anticipate GLU-D developing as a promising analog of GLU for studying the dynamics of glutamate during neuronal activity.


Author(s):  
Zhong-wei Zhang

ABSTRACT:The mammalian neocortex is the largest structure in the brain, and plays a key role in brain function. A critical period for the development of the neocortex is the early postnatal life, when the majority of synapses are formed and when much of synaptic remodeling takes place. Early studies suggest that initial synaptic connections lack precision, and this rudimentary wiring pattern is refined by experience-related activity through selective elimination and consolidation. This view has been challenged by recent studies revealing the presence of a relatively precise pattern of connections before the onset of sensory experience. The recent data support a model in which specificity of neuronal connections is largely determined by genetic factors. Spontaneous activity is required for the formation of neural circuits, but whether it plays an instructive role is still controversial. Neurotransmitters including acetylcholine, serotonin, and γ-Aminobutyric acid (GABA) may have key roles in the regulation of spontaneous activity, and in the maturation of synapses in the developing brain.


2007 ◽  
Vol 230 (1-2) ◽  
pp. 53-63 ◽  
Author(s):  
Sarah M. McKay ◽  
Sharon Oleskevich

Sign in / Sign up

Export Citation Format

Share Document