New Dual Fluorescent Dyes Based on Modified “Excited State with Extended Conjunction” Photophysical Model

Author(s):  
Michael P. Begaye ◽  
Premchendar Nandhikonda ◽  
Zhi Cao ◽  
Michael D. Heagy
2020 ◽  
Vol 223 ◽  
pp. 117206 ◽  
Author(s):  
Andrii Yu Chumak ◽  
Yelizaveta O. Denysieva ◽  
Oleksii O. Kolomoitsev ◽  
Volodymyr M. Kotlyar ◽  
Elena H. Shvets ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7434
Author(s):  
Anna M. Grabarz ◽  
Borys Ośmiałowski

This study presents an extensive analysis of the predictive power of time-dependent density functional theory in determining the excited-state properties of two groups of important fluorescent dyes, difluoroboranes and hydroxyphenylimidazo[1,2-a]pyridine derivatives. To ensure statistically meaningful results, the data set is comprised of 85 molecules manifesting diverse photophysical properties. The vertical excitation energies and dipole moments (in the electronic ground and excited states) of the aforementioned dyes were determined using the RI-CC2 method (reference) and with 18 density functional approximations (DFA). The set encompasses DFAs with varying amounts of exact exchange energy (EEX): from 0% (e.g., SVWN, BLYP), through a medium (e.g., TPSSh, B3LYP), up to a major contribution of EEX (e.g., BMK, MN15). It also includes range-separated hybrids (CAM-B3LYP, LC-BLYP). Similar error profiles of vertical energy were obtained for both dye groups, although the errors related to hydroxyphenylimidazopiridines are significantly larger. Overall, functionals including 40–55% of EEX (SOGGA11-X, BMK, M06-2X) ensure satisfactory agreement with the reference vertical excitation energies obtained using the RI-CC2 method; however, MN15 significantly outperforms them, providing a mean absolute error of merely 0.04 eV together with a very high correlation coefficient (R2 = 0.98). Within the investigated set of functionals, there is no single functional that would equally accurately determine ground- and excited-state dipole moments of difluoroboranes and hydroxyphenylimidazopiridine derivatives. Depending on the chosen set of dyes, the most accurate μGS predictions were delivered by MN15 incorporating a major EEX contribution (difluoroboranes) and by PBE0 containing a minor EEX fraction (hydroxyphenylimidazopiridines). Reverse trends are observed for μES, i.e., for difluoroboranes the best results were obtained with functionals including a minor fraction of EEX, specifically PBE0, while in the case of hydroxyphenylimidazopiridines, much more accurate predictions were provided by functionals incorporating a major EEX contribution (BMK, MN15).


2017 ◽  
Vol 15 (19) ◽  
pp. 4072-4076 ◽  
Author(s):  
Qiang Fei ◽  
Xianfeng Gu ◽  
Yajing Liu ◽  
Ben Shi ◽  
Hengyan Liu ◽  
...  

New ESIPT-based BODIPYs are developed to render the NIR emissions with a large Stokes shift.


1993 ◽  
Vol 71 (1-2) ◽  
pp. 59-65 ◽  
Author(s):  
Marie-Claire Gazeau ◽  
Véronique Wintgens ◽  
Pierre Valat ◽  
Jean Kossanyi ◽  
Denis Doizi ◽  
...  

A new method has been developed to measure the excited-state absorption cross sections σ1n, of highly fluorescent dyes. which gives excited singlet-state absorption (ESSA) spectra over most of the UV–visible region, including the one where the fluorescence occurs. The error in the σ1n values depends on that for the singlet excited-state concentration. Our method used benzophenone as an actinometer to determine the excited-state concentration. Rhodamine 6G was used to test the method; the ESSA spectrum obtained shows a maximum around 530 nm with an excited-state absorption cross section σ1n value of 2.08 × 10−16 cm2. Our results are discussed and compared with those reported in the literature.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.


Author(s):  
W.A. Carrington ◽  
F.S. Fay ◽  
K.E. Fogarty ◽  
L. Lifshitz

Advances in digital imaging microscopy and in the synthesis of fluorescent dyes allow the determination of 3D distribution of specific proteins, ions, GNA or DNA in single living cells. Effective use of this technology requires a combination of optical and computer hardware and software for image restoration, feature extraction and computer graphics.The digital imaging microscope consists of a conventional epifluorescence microscope with computer controlled focus, excitation and emission wavelength and duration of excitation. Images are recorded with a cooled (-80°C) CCD. 3D images are obtained as a series of optical sections at .25 - .5 μm intervals.A conventional microscope has substantial blurring along its optical axis. Out of focus contributions to a single optical section cause low contrast and flare; details are poorly resolved along the optical axis. We have developed new computer algorithms for reversing these distortions. These image restoration techniques and scanning confocal microscopes yield significantly better images; the results from the two are comparable.


Author(s):  
Rudolf Oldenbourg

The recent renaissance of the light microsope is fueled in part by technological advances in components on the periphery of the microscope, such as the laser as illumination source, electronic image recording (video), computer assisted image analysis and the biochemistry of fluorescent dyes for labeling specimens. After great progress in these peripheral parts, it seems timely to examine the optics itself and ask how progress in the periphery facilitates the use of new optical components and of new optical designs inside the microscope. Some results of this fruitful reflection are presented in this symposium.We have considered the polarized light microscope, and developed a design that replaces the traditional compensator, typically a birefringent crystal plate, with a precision universal compensator made of two liquid crystal variable retarders. A video camera and digital image processing system provide fast measurements of specimen anisotropy (retardance magnitude and azimuth) at ALL POINTS of the image forming the field of view. The images document fine structural and molecular organization within a thin optical section of the specimen.


Sign in / Sign up

Export Citation Format

Share Document