MRI Tissue Segmentation Using a Variational Multilayer Approach

Author(s):  
Ginmo Chung ◽  
Ivo D. Dinov ◽  
Arthur W. Toga ◽  
Luminita A. Vese
Keyword(s):  
2021 ◽  
Author(s):  
Yan Zhang ◽  
Yifei Li ◽  
Youyong Kong ◽  
Jiasong Wu ◽  
Jian Yang ◽  
...  

Author(s):  
Xiansong Huang ◽  
Hongliang He ◽  
Pengxu Wei ◽  
Chi Zhang ◽  
Juncen Zhang ◽  
...  

2021 ◽  
Author(s):  
Gaia Amaranta Taberna ◽  
Jessica Samogin ◽  
Dante Mantini

AbstractIn the last years, technological advancements for the analysis of electroencephalography (EEG) recordings have permitted to investigate neural activity and connectivity in the human brain with unprecedented precision and reliability. A crucial element for accurate EEG source reconstruction is the construction of a realistic head model, incorporating information on electrode positions and head tissue distribution. In this paper, we introduce MR-TIM, a toolbox for head tissue modelling from structural magnetic resonance (MR) images. The toolbox consists of three modules: 1) image pre-processing – the raw MR image is denoised and prepared for further analyses; 2) tissue probability mapping – template tissue probability maps (TPMs) in individual space are generated from the MR image; 3) tissue segmentation – information from all the TPMs is integrated such that each voxel in the MR image is assigned to a specific tissue. MR-TIM generates highly realistic 3D masks, five of which are associated with brain structures (brain and cerebellar grey matter, brain and cerebellar white matter, and brainstem) and the remaining seven with other head tissues (cerebrospinal fluid, spongy and compact bones, eyes, muscle, fat and skin). Our validation, conducted on MR images collected in healthy volunteers and patients as well as an MR template image from an open-source repository, demonstrates that MR-TIM is more accurate than alternative approaches for whole-head tissue segmentation. We hope that MR-TIM, by yielding an increased precision in head modelling, will contribute to a more widespread use of EEG as a brain imaging technique.


Author(s):  
Kuo-Lung Lor ◽  
Chung-Ming Chen

The image segmentation of histopathological tissue images has always been a challenge due to the overlapping of tissue color distributions, the complexity of extracellular texture and the large image size. In this paper, we introduce a new region-merging algorithm, namely, the Regional Pattern Merging (RPM) for interactive color image segmentation and annotation, by efficiently retrieving and applying the user’s prior knowledge of stroke-based interaction. Low-level color/texture features of each region are used to compose a regional pattern adapted to differentiating a foreground object from the background scene. This iterative region-merging is based on a modified Region Adjacency Graph (RAG) model built from initial segmented results of the mean shift to speed up the merging process. The foreground region of interest (ROI) is segmented by the reduction of the background region and discrimination of uncertain regions. We then compare our method against state-of-the-art interactive image segmentation algorithms in both natural images and histological images. Taking into account the homogeneity of both color and texture, the resulting semi-supervised classification and interactive segmentation capture histological structures more completely than other intensity or color-based methods. Experimental results show that the merging of the RAG model runs in a linear time according to the number of graph edges, which is essentially faster than both traditional graph-based and region-based methods.


Sign in / Sign up

Export Citation Format

Share Document