Optimisation of a Stator Blade Used in a Transonic Compressor Cascade with Evolution Strategies

Author(s):  
Markus Olhofer ◽  
Bernhard Sendhoff ◽  
Toshiyuki Arima ◽  
Toyotaka Sonoda
2021 ◽  
Vol 11 (11) ◽  
pp. 4845
Author(s):  
Mohammad Hossein Noorsalehi ◽  
Mahdi Nili-Ahmadabadi ◽  
Seyed Hossein Nasrazadani ◽  
Kyung Chun Kim

The upgraded elastic surface algorithm (UESA) is a physical inverse design method that was recently developed for a compressor cascade with double-circular-arc blades. In this method, the blade walls are modeled as elastic Timoshenko beams that smoothly deform because of the difference between the target and current pressure distributions. Nevertheless, the UESA is completely unstable for a compressor cascade with an intense normal shock, which causes a divergence due to the high pressure difference near the shock and the displacement of shock during the geometry corrections. In this study, the UESA was stabilized for the inverse design of a compressor cascade with normal shock, with no geometrical filtration. In the new version of this method, a distribution for the elastic modulus along the Timoshenko beam was chosen to increase its stiffness near the normal shock and to control the high deformations and oscillations in this region. Furthermore, to prevent surface oscillations, nodes need to be constrained to move perpendicularly to the chord line. With these modifications, the instability and oscillation were removed through the shape modification process. Two design cases were examined to evaluate the method for a transonic cascade with normal shock. The method was also capable of finding a physical pressure distribution that was nearest to the target one.


2021 ◽  
Author(s):  
Jiuliang Gan ◽  
Toshinori Watanabe ◽  
Takehiro Himeno

Abstract The unsteady behavior of the shock wave was studied in an oscillating transonic compressor cascade. The experimental measurement and corresponding numerical simulation were conducted on the cascade with different shock patterns based on influence coefficient method. The unsteady pressure distribution on blade surface was measured with fast-response pressure-sensitive paint (PSP) to capture the unsteady aerodynamic force as well as the shock wave movement. It was found that the movement of shock waves in the neighboring flow passages of the oscillating blade was almost anti-phase between the two shock patterns, namely, the double shocks pattern and the merged shock pattern. It was also found that the amplitude of the unsteady pressure caused by the passage shock wave was very large under the merged shock pattern compared with the double shocks pattern. The stability of blade vibration was also analyzed for both shock patterns including 3-D flow effect. These findings were thought to shed light on the fundamental understanding of the unsteady aerodynamic characteristics of oscillating cascade caused by the shock wave behavior.


Author(s):  
Marcel Staats ◽  
Wolfgang Nitsche

We present results of experiments on a periodically unsteady compressor stator flow of the type which would be expected in consequence of pulsed combustion. A Reynolds number of Re = 600000 was used for the investigations. The experiments were conducted on the two-dimensional low-speed compressor testing facility in Berlin. A choking device downstream the trailing edges induced a periodic non-steady outflow condition to each stator vane which simulated the impact of a pressure gaining combuster downstream from the last stator. The Strouhal number of the periodic disturbance was Sr = 0.03 w.r.t. the stator chord length. Due to the periodic non-steady outflow condition, the flow-field suffers from periodic flow separation phenomena, which were managed by means of active flow control. In our case, active control of the corner separation was applied using fluidic actuators based on the principle of fluidic amplification. The flow separation on the centre region of the stator blade was suppressed by means of a fluidic blade actuator leading to an overall time-averaged loss reduction of 11.5%, increasing the static pressure recovery by 6.8% while operating in the non-steady regime. Pressure measurements on the stator blade and the wake as well as PIV data proved the beneficial effect of the active flow control application to the flow field and the improvement of the compressor characteristics. The actuation efficiency was evaluated by two figures of merit introduced in this contribution.


2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Niklas Neupert ◽  
Birger Ober ◽  
Franz Joos

In recent years, overspray fogging has become a powerful means for power augmentation of industrial gas turbines (GT). Most of the studies concerning this topic focus on the problem from a thermodynamic point of view. Only a few studies, however, were undertaken to investigate the droplet behavior in the flow channel of a compressor. In this paper, results of experimental investigation of a water laden flow through a transonic compressor cascade are presented. A finely dispersed spray was used in the measurements (D10 < 10 μm). Results of the droplet behavior are shown in terms of shadowgraphy images and images of the blade surface film pattern. The angle of attack, the incoming velocity, and the water load were varied. The qualitative observations are related to laser Doppler and phase Doppler anemometer (LDA/PDA) data taken in the flow channel and at the outlet of the cascade. The data represent a base for numerical and mean line models of two-phase compressor flow.


Author(s):  
Anthony Dent ◽  
Liping Xu ◽  
Roger Wells

In this paper results from steady and unsteady CFD simulations of an industrial transonic compressor are compared, in order to gain a better understanding of the cause of the differences in the predicted efficiencies between the steady and unsteady simulations. Initially the first stage is simulated as an isolated compressor stage with inlet guide vanes in order to analyse the effect of individual blade rows on the stage performance. It is found that the rotor efficiency is lower for steady simulations than for unsteady simulations due to stronger shock waves. The stator efficiency is greater in the steady simulations due to not being able to model the interaction of the rotor wakes with the stator blade leading edge and boundary layers. Greater variation between steady and unsteady predictions is found at higher operating speeds. In the 3-stage unsteady simulations, the front stage efficiency characteristic is the same as the efficiency calculated from the isolated unsteady simulations. This shows that the unsteady pressure potential propagating from the downstream stages has no significant effect on the front stage efficiency meaning that the designer does not need to give great consideration to the downstream blade rows when predicting the characteristics of the front stage.


Author(s):  
A. Hergt ◽  
J. Klinner ◽  
J. Wellner ◽  
C. Willert ◽  
S. Grund ◽  
...  

The flow through a transonic compressor cascade shows a very complex structure due to the occuring shock waves. In addition, the interaction of these shock waves with the blade boundary layer inherently leads to a very unsteady flow behaviour. The aim of the current investigation is to quantify this behaviour and its influence on the cascade performance as well as to describe the occuring transonic flow phenomena in detail. Therefore, an extensive experimental investigation of the flow in a transonic compressor cascade has been conducted within the transonic cascade wind tunnel of DLR at Cologne. In this process, the flow phenomena were thoroughly examined for an inflow Mach number of 1.21. The experiments investigate both, the laminar as well as the turbulent shock wave boundary layer interaction within the blade passage and the resulting unsteady behaviour. The experiments show a fluctuation range of the passage shock wave of about 10 percent chord for both cases, which is directly linked with a change of the inflow angle and of the operating point of the cascade. Thereafter, RANS simulations have been performed aiming at the verification of the reproducibility of the experimentally examined flow behavior. Here it is observed that the dominant flow effects are not reproduced by a steady numerical simulation. Therefore, a further unsteady simulation has been carried out in order to capture the unsteady flow behaviour. The results from this simulation show that the fluctuation of the passage shock wave can be reproduced but not in the correct magnitude. This leads to a remaining weak point within the design process of transonic compressor blades, because the working range will be overpredicted. The resulting conclusion of the study is that the use of scale resolving methods such as LES or the application of DNS is necessary to correctly predict unsteadiness of the transonic cascade flow and its impact on the cascade performance.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Niklas Neupert ◽  
Janneck Christoph Harbeck ◽  
Franz Joos

In recent years, overspray fogging has become a powerful means for power augmentation of industrial gas turbines. Despite the positive thermodynamic effect on the cycle, droplets entering the compressor increase the risk of water droplet erosion and deposition of water on the blades leading to an increase of required torque and profile loss. Due to this, detailed information about the structure and the amount of water on the surface is key for compressor performance. Experiments were conducted with a droplet laden flow in a transonic compressor cascade focusing on the film formed by the deposited water. Two approaches were taken. In the first approach, the film thickness on the blade was directly measured using white light interferometry. Due to significant distortion of the flow caused by the measurement system, a transfer of the measured film thickness to the undisturbed case is not possible. Therefore, a film model is adapted to describe the film flow in terms of height averaged film parameters. In the second approach, experiments were conducted in an undisturbed cascade setup and the water film pattern was measured using a nonintrusive quantitative image processing tool. Utilizing the measured flow pattern in combination with findings from the literature, the rivulet flow structure is resolved. From continuity of the water flow, a film thickness is derived showing good agreement with the previously calculated results. Using both approaches, a three-dimensional (3D) reconstruction of the water film pattern is created giving first experimental results of the film forming on stationary compressor blades under overspray fogging conditions.


2000 ◽  
Vol 123 (2) ◽  
pp. 409-417 ◽  
Author(s):  
Bjo¨rn Gru¨ber ◽  
Volker Carstens

A parametric study which investigates the influence of viscous effects on the damping behavior of vibrating compressor cascades is presented here. To demonstrate the dependence of unsteady aerodynamic forces on the flow viscosity, a computational study was performed for a transonic compressor cascade of which the blades underwent tuned pitching oscillations while the flow conditions extended from fully subsonic to highly transonic flow. Additionally, the reduced frequency and Reynolds number were varied. In order to check the linear behavior of the aerodynamic forces, all calculations were carried out for three different oscillation amplitudes. Comparisons with inviscid Euler results helped identify the influence of viscous effects. The computations were performed with a Navier-Stokes code, the basic features of which are the use of an AUSM upwind scheme, an implicit time integration, and the implementation of the Baldwin-Lomax turbulence model. In order to demonstrate the possibility of this code to correctly predict the unsteady behavior of strong shock-boundary layer interactions, the experiment of Yamamoto and Tanida on a self-induced shock oscillation due to shock-boundary layer interaction was calculated. A significant improvement in the prediction of the shock amplitude was achieved by a slight modification of the Baldwin Lomax turbulence model. An important result of the presented compressor cascade investigations is that viscous effects may cause a significant change in the aerodynamic damping. This behavior is demonstrated by two cases in which an Euler calculation predicts a damped oscillation whereas a Navier-Stokes computation leads to an excited vibration. It was found that the reason for these contrary results are shock-boundary-layer interactions which dramatically change the aerodynamic damping.


Sign in / Sign up

Export Citation Format

Share Document