The Application of Life Cycle Assessment on Agricultural Production Systems with Reference to Lignocellulosic Biogas and Bioethanol Production as Transport Fuels

Author(s):  
Nicholas E. Korres
2018 ◽  
Vol 2 (95) ◽  
pp. 69-72
Author(s):  
Yu.A. Tarariko ◽  
L.V. Datsko ◽  
M.O. Datsko

The aim of the work is to assess the existing and prospective models for the development of agricultural production in Central Polesie on the basis of economic feasibility and ecological balance. The evaluation of promising agricultural production systems was carried out with the help of simulation modeling of various infrastructure options at the levels of crop and multisectoral specialization of agroecosystems. The agro-resource potential of Central Polesie is better implemented in the rotation with lupine, corn and flax dolguntsem with well-developed infrastructure, including crop, livestock units, grain processing and storage systems, feed, finished products and waste processing in the bioenergetic station. The expected income for the formation of such an infrastructure is almost 8 thousand dollars. / with a payback period of capital investments of 2-3 years.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 879
Author(s):  
Giuseppe Timpanaro ◽  
Ferdinando Branca ◽  
Mariarita Cammarata ◽  
Giacomo Falcone ◽  
Alessandro Scuderi

Climate change, food security, and the protection of the planet’s resources require the adoption of sustainable production models. Achieving sustainable development in the agri-food sector enables the creation of new opportunities for operators, guiding farmers towards more environmentally friendly practices and offering cost-effective results. Organic farming paradigms are promoted by the transformation of some harmful practices of conventional agriculture, such as the wide use of chemical products of synthesis, the deep workings that favor the erosive processes, the excessive use of nitrogenous fertilizers. There are still gaps in the knowledge of the real performance of some products that strongly support the local economic system of Sicily (Italy). The research aims to highlight the differences in environmental impact caused by the cultivation of organic early potatoes compared to the conventional regime and the same per kg of product obtained. To this end, the widely used methodology for comparing the environmental impacts of agricultural production systems is the Life Cycle Assessment, which allows us to highlight the phases in which environmental criticalities are most concentrated. An interesting agroecological picture of knowledge emerges, since organic farming is by definition an ecological model that supports the principles of the Green Deal, it often requires interventions to improve the yields obtained in order to achieve a positive result both in terms of cultivated surface and kg of product obtained.


2021 ◽  
Vol 13 (7) ◽  
pp. 3660
Author(s):  
Rathna Hor ◽  
Phanna Ly ◽  
Agusta Samodra Putra ◽  
Riaru Ishizaki ◽  
Tofael Ahamed ◽  
...  

Traditional Cambodian food has higher nutrient balances and is environmentally sustainable compared to conventional diets. However, there is a lack of knowledge and evidence on nutrient intake and the environmental greenness of traditional food at different age distributions. The relationship between nutritional intake and environmental impact can be evaluated using carbon dioxide (CO2) emissions from agricultural production based on life cycle assessment (LCA). The objective of this study was to estimate the CO2 equivalent (eq) emissions from the traditional Cambodian diet using LCA, starting at each agricultural production phase. A one-year food consumption scenario with the traditional diet was established. Five breakfast (BF1–5) and seven lunch and dinner (LD1–7) food sets were consumed at the same rate and compared using LCA. The results showed that BF1 and LD2 had the lowest and highest emissions (0.3 Mt CO2 eq/yr and 1.2 Mt CO2 eq/yr, respectively). The food calories, minerals, and vitamins met the recommended dietary allowance. The country’s existing food production system generates CO2 emissions of 9.7 Mt CO2 eq/yr, with the proposed system reducing these by 28.9% to 6.9 Mt CO2 eq/yr. The change in each food item could decrease emissions depending on the type and quantity of the food set, especially meat and milk consumption.


Sign in / Sign up

Export Citation Format

Share Document