PIC: Power Divergence Information Criterion

Author(s):  
Noel Cressie
1990 ◽  
Vol 29 (03) ◽  
pp. 200-204 ◽  
Author(s):  
J. A. Koziol

AbstractA basic problem of cluster analysis is the determination or selection of the number of clusters evinced in any set of data. We address this issue with multinomial data using Akaike’s information criterion and demonstrate its utility in identifying an appropriate number of clusters of tumor types with similar profiles of cell surface antigens.


Author(s):  
Venuka Sandhir ◽  
Vinod Kumar ◽  
Vikash Kumar

Background: COVID-19 cases have been reported as a global threat and several studies are being conducted using various modelling techniques to evaluate patterns of disease dispersion in the upcoming weeks. Here we propose a simple statistical model that could be used to predict the epidemiological extent of community spread of COVID-19from the explicit data based on optimal ARIMA model estimators. Methods: Raw data was retrieved on confirmed cases of COVID-19 from Johns Hopkins University (https://github.com/CSSEGISandData/COVID-19) and Auto-Regressive Integrated Moving Average (ARIMA) model was fitted based on cumulative daily figures of confirmed cases aggregated globally for ten major countries to predict their incidence trend. Statistical analysis was completed by using R 3.5.3 software. Results: The optimal ARIMA model having the lowest Akaike information criterion (AIC) value for US (0,2,0); Spain (1,2,0); France (0,2,1); Germany (3,2,2); Iran (1,2,1); China (0,2,1); Russia (3,2,1); India (2,2,2); Australia (1,2,0) and South Africa (0,2,2) imparted the nowcasting of trends for the upcoming weeks. These parameters are (p, d, q) where p refers to number of autoregressive terms, d refers to number of times the series has to be differenced before it becomes stationary, and q refers to number of moving average terms. Results obtained from ARIMA model showed significant decrease cases in Australia; stable case for China and rising cases has been observed in other countries. Conclusion: This study tried their best at predicting the possible proliferate of COVID-19, although spreading significantly depends upon the various control and measurement policy taken by each country.


Genetics ◽  
1996 ◽  
Vol 143 (4) ◽  
pp. 1819-1829 ◽  
Author(s):  
G Thaller ◽  
L Dempfle ◽  
I Hoeschele

Abstract Maximum likelihood methodology was applied to determine the mode of inheritance of rare binary traits with data structures typical for swine populations. The genetic models considered included a monogenic, a digenic, a polygenic, and three mixed polygenic and major gene models. The main emphasis was on the detection of major genes acting on a polygenic background. Deterministic algorithms were employed to integrate and maximize likelihoods. A simulation study was conducted to evaluate model selection and parameter estimation. Three designs were simulated that differed in the number of sires/number of dams within sires (10/10, 30/30, 100/30). Major gene effects of at least one SD of the liability were detected with satisfactory power under the mixed model of inheritance, except for the smallest design. Parameter estimates were empirically unbiased with acceptable standard errors, except for the smallest design, and allowed to distinguish clearly between the genetic models. Distributions of the likelihood ratio statistic were evaluated empirically, because asymptotic theory did not hold. For each simulation model, the Average Information Criterion was computed for all models of analysis. The model with the smallest value was chosen as the best model and was equal to the true model in almost every case studied.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dmitry M. Davydov ◽  
Andrey Boev ◽  
Stas Gorbunov

AbstractSituational or persistent body fluid deficit (i.e., de- or hypo-hydration) is considered a significant health risk factor. Bioimpedance analysis (BIA) has been suggested as an alternative to less reliable subjective and biochemical indicators of hydration status. The present study aimed to compare various BIA models in the prediction of direct measures of body compartments associated with hydration/osmolality. Fish (n = 20) was selected as a biological model for physicochemically measuring proximate body compartments associated with hydration such as water, dissolved proteins, and non-osseous minerals as the references or criterion points. Whole-body and segmental/local impedance measures were used to investigate a pool of BIA models, which were compared by Akaike Information Criterion in their ability to accurately predict the body components. Statistical models showed that ‘volumetric-based’ BIA measures obtained in parallel, such as distance2/Rp, could be the best approach in predicting percent of body moisture, proteins, and minerals in the whole-body schema. However, serially-obtained BIA measures, such as the ratio of the reactance to resistance and the resistance adjusted for distance between electrodes, were the best fitting in predicting the compartments in the segmental schema. Validity of these results should be confirmed on humans before implementation in practice.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 79-80
Author(s):  
Chinyere Ekine ◽  
Raphael Mrode ◽  
Edwin Oyieng ◽  
Daniel Komwihangilo ◽  
Gilbert Msuta ◽  
...  

Abstract Modelling the growth curve of animals provides information on growth characteristics and is important for optimizing management in different livestock systems. This study evaluated the growth curves of crossbred calves from birth to 30 months of age in small holder dairy farms in Tanzania using a two parameter (exponential), four different three parameters (Logistic, von Bertalanffy, Brody, Gompertz), and three polynomial functions. Predicted weights based on heart girth measurements of 623 male and 846 female calves born between 2016 and 2019 used in this study were from the African Dairy Genetic Gains (ADGG) project in selected milk sheds in Tanzania, namely Tanga, Kilimanjaro, Arusha, Iringa, Njomba and Mbeya. Each function was fitted separately to weight measurement of males and females adjusted for the effect of ward and season of birth using the nonlinear least squares (nls) functions in R statistical software. The Akaike’s information criterion (AIC) and Bayesian information criterion (BIC) were used for model comparison. Based on these criteria, all three polynomial and four parameter functions performed better and did not differ enough from each other in both males and females compared to the two-parameter exponential model. Predicted weight varied among the models and differed between males and females. The highest estimated weight was observed in the Brody model for both males (278.09 kg) and females (264.10 kg). Lowest estimated weight was observed in the exponential model. Estimated growth rate varied among models. For males, it ranged from 0.04 kg-0.08 kg and for females, from 0.05 kg-0.09 kg in the Brody model and logistic model respectively. Predictive ability across all fitted curves was low, ranging from 25% to approximately 29%. This could be due to the huge range of breed compositions in the evaluated crossbred calves which characterizes small holder dairy farms in this system and different levels of farm management.


Author(s):  
Mark David Walker ◽  
Mihály Sulyok

Abstract Background Restrictions on social interaction and movement were implemented by the German government in March 2020 to reduce the transmission of coronavirus disease 2019 (COVID-19). Apple's “Mobility Trends” (AMT) data details levels of community mobility; it is a novel resource of potential use to epidemiologists. Objective The aim of the study is to use AMT data to examine the relationship between mobility and COVID-19 case occurrence for Germany. Is a change in mobility apparent following COVID-19 and the implementation of social restrictions? Is there a relationship between mobility and COVID-19 occurrence in Germany? Methods AMT data illustrates mobility levels throughout the epidemic, allowing the relationship between mobility and disease to be examined. Generalized additive models (GAMs) were established for Germany, with mobility categories, and date, as explanatory variables, and case numbers as response. Results Clear reductions in mobility occurred following the implementation of movement restrictions. There was a negative correlation between mobility and confirmed case numbers. GAM using all three categories of mobility data accounted for case occurrence as well and was favorable (AIC or Akaike Information Criterion: 2504) to models using categories separately (AIC with “driving,” 2511. “transit,” 2513. “walking,” 2508). Conclusion These results suggest an association between mobility and case occurrence. Further examination of the relationship between movement restrictions and COVID-19 transmission may be pertinent. The study shows how new sources of online data can be used to investigate problems in epidemiology.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1252.2-1253
Author(s):  
R. Garofoli ◽  
M. Resche-Rigon ◽  
M. Dougados ◽  
D. Van der Heijde ◽  
C. Roux ◽  
...  

Background:Axial spondyloarthritis (axSpA) is a chronic rheumatic disease that encompasses various clinical presentations: inflammatory chronic back pain, peripheral manifestations and extra-articular manifestations. The current nomenclature divides axSpA in radiographic (in the presence of radiographic sacroiliitis) and non-radiographic (in the absence of radiographic sacroiliitis, with or without MRI sacroiliitis. Given that the functional burden of the disease appears to be greater in patients with radiographic forms, it seems crucial to be able to predict which patients will be more likely to develop structural damage over time. Predictive factors for radiographic progression in axSpA have been identified through use of traditional statistical models like logistic regression. However, these models present some limitations. In order to overcome these limitations and to improve the predictive performance, machine learning (ML) methods have been developed.Objectives:To compare ML models to traditional models to predict radiographic progression in patients with early axSpA.Methods:Study design: prospective French multicentric cohort study (DESIR cohort) with 5years of follow-up. Patients: all patients included in the cohort, i.e. 708 patients with inflammatory back pain for >3 months but <3 years, highly suggestive of axSpA. Data on the first 5 years of follow-up was used. Statistical analyses: radiographic progression was defined as progression either at the spine (increase of at least 1 point per 2 years of mSASSS scores) or at the sacroiliac joint (worsening of at least one grade of the mNY score between 2 visits). Traditional modelling: we first performed a bivariate analysis between our outcome (radiographic progression) and explanatory variables at baseline to select the variables to be included in our models and then built a logistic regression model (M1). Variable selection for traditional models was performed with 2 different methods: stepwise selection based on Akaike Information Criterion (stepAIC) method (M2), and the Least Absolute Shrinkage and Selection Operator (LASSO) method (M3). We also performed sensitivity analysis on all patients with manual backward method (M4) after multiple imputation of missing data. Machine learning modelling: using the “SuperLearner” package on R, we modelled radiographic progression with stepAIC, LASSO, random forest, Discrete Bayesian Additive Regression Trees Samplers (DBARTS), Generalized Additive Models (GAM), multivariate adaptive polynomial spline regression (polymars), Recursive Partitioning And Regression Trees (RPART) and Super Learner. Finally, the accuracy of traditional and ML models was compared based on their 10-foldcross-validated AUC (cv-AUC).Results:10-fold cv-AUC for traditional models were 0.79 and 0.78 for M2 and M3, respectively. The 3 best models in the ML algorithm were the GAM, the DBARTS and the Super Learner models, with 10-fold cv-AUC of: 0.77, 0.76 and 0.74, respectively (Table 1).Table 1.Comparison of 10-fold cross-validated AUC between best traditional and machine learning models.Best modelsCross-validated AUCTraditional models M2 (step AIC method)0.79 M3 (LASSO method)0.78Machine learning approach SL Discrete Bayesian Additive Regression Trees Samplers (DBARTS)0.76 SL Generalized Additive Models (GAM)0.77 Super Learner0.74AUC: Area Under the Curve; AIC: Akaike Information Criterion; LASSO: Least Absolute Shrinkage and Selection Operator; SL: SuperLearner. N = 295.Conclusion:Traditional models predicted better radiographic progression than ML models in this early axSpA population. Further ML algorithms image-based or with other artificial intelligence methods (e.g. deep learning) might perform better than traditional models in this setting.Acknowledgments:Thanks to the French National Society of Rheumatology and the DESIR cohort.Disclosure of Interests:Romain Garofoli: None declared, Matthieu resche-rigon: None declared, Maxime Dougados Grant/research support from: AbbVie, Eli Lilly, Merck, Novartis, Pfizer and UCB Pharma, Consultant of: AbbVie, Eli Lilly, Merck, Novartis, Pfizer and UCB Pharma, Speakers bureau: AbbVie, Eli Lilly, Merck, Novartis, Pfizer and UCB Pharma, Désirée van der Heijde Consultant of: AbbVie, Amgen, Astellas, AstraZeneca, BMS, Boehringer Ingelheim, Celgene, Cyxone, Daiichi, Eisai, Eli-Lilly, Galapagos, Gilead Sciences, Inc., Glaxo-Smith-Kline, Janssen, Merck, Novartis, Pfizer, Regeneron, Roche, Sanofi, Takeda, UCB Pharma; Director of Imaging Rheumatology BV, Christian Roux: None declared, Anna Moltó Grant/research support from: Pfizer, UCB, Consultant of: Abbvie, BMS, MSD, Novartis, Pfizer, UCB


Forecasting ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 39-55
Author(s):  
Rodgers Makwinja ◽  
Seyoum Mengistou ◽  
Emmanuel Kaunda ◽  
Tena Alemiew ◽  
Titus Bandulo Phiri ◽  
...  

Forecasting, using time series data, has become the most relevant and effective tool for fisheries stock assessment. Autoregressive integrated moving average (ARIMA) modeling has been commonly used to predict the general trend for fish landings with increased reliability and precision. In this paper, ARIMA models were applied to predict Lake Malombe annual fish landings and catch per unit effort (CPUE). The annual fish landings and CPUE trends were first observed and both were non-stationary. The first-order differencing was applied to transform the non-stationary data into stationary. Autocorrelation functions (AC), partial autocorrelation function (PAC), Akaike information criterion (AIC), Bayesian information criterion (BIC), square root of the mean square error (RMSE), the mean absolute error (MAE), percentage standard error of prediction (SEP), average relative variance (ARV), Gaussian maximum likelihood estimation (GMLE) algorithm, efficiency coefficient (E2), coefficient of determination (R2), and persistent index (PI) were estimated, which led to the identification and construction of ARIMA models, suitable in explaining the time series and forecasting. According to the measures of forecasting accuracy, the best forecasting models for fish landings and CPUE were ARIMA (0,1,1) and ARIMA (0,1,0). These models had the lowest values AIC, BIC, RMSE, MAE, SEP, ARV. The models further displayed the highest values of GMLE, PI, R2, and E2. The “auto. arima ()” command in R version 3.6.3 further displayed ARIMA (0,1,1) and ARIMA (0,1,0) as the best. The selected models satisfactorily forecasted the fish landings of 2725.243 metric tons and CPUE of 0.097 kg/h by 2024.


Sign in / Sign up

Export Citation Format

Share Document