A Role for Cell Surface Sialic Acid in Liberating Metastatic Tumor Cells from Host Control

Author(s):  
V. Schirrmacher ◽  
J. Dennis ◽  
C. A. Waller ◽  
P. Altevogt
1987 ◽  
Author(s):  
N Esumi ◽  
S Todo ◽  
S Imashuku

Involvement of platelets and coagulation systems in the hematogenous metastasis of tumor cells has been suggested from in vivo and in vitro studies, however, there is still controversy about the exact role of hemostasis in metastasis. To date, at least three types of platelet aggregating mechanisms and three types of tumor cell procoagulants have been reported in different tumor cells.We investigated platelet aggregating activity (PAA), procoagulant activity (PCA) and the relationship between these two activities, using eight human neuroblastoma cell lines, three human leukemia cell lines and human mature lymphocytes. PCA in tumor cells was measured by the single stage recalcification time and the assay with chromogenic substrate S2222. PAA was determined turbidometrically with an aggregometer by adding cell suspensions of tumor cells to platelet rich plasma (PRP). The effects of protease inhibitors, enzymes and thrombin inhibitors on PAA and PCA were also studied.Neuroblastoma cell suspensions showed high PCAs which were reduced in Factor VII deficient human plasma, indicating a tissue factor-like activity. NCG line possessing the highest PCA also showed a high PAA, which was inhibited by pretreatment of cell suspensions with phospholipase A2 and abolished in the presence of heparin, hirudin or MD805 in the assay system. Human leukemia cell lines and mature lymphocytes had weak to moderate PCAs without showing PAA, but became active to express PAA after being removed of cell surface sialic acid by neuraminidase. These results suggest that in neuroblastoma, PCA closely linked with PAA may play a role in the hematogenous metastasis. In hemopoietic cells, PAA expressed when cell surface sialic acid is removed does not correlate with PCA, and sialic acid in these cells possibly prevents direct interaction with platelets in the hemostatic homeostasis.


2007 ◽  
Vol 179 (4) ◽  
pp. 777-791 ◽  
Author(s):  
Mazen Sidani ◽  
Deborah Wessels ◽  
Ghassan Mouneimne ◽  
Mousumi Ghosh ◽  
Sumanta Goswami ◽  
...  

We have investigated the effects of inhibiting the expression of cofilin to understand its role in protrusion dynamics in metastatic tumor cells, in particular. We show that the suppression of cofilin expression in MTLn3 cells (an apolar randomly moving amoeboid metastatic tumor cell) caused them to extend protrusions from only one pole, elongate, and move rectilinearly. This remarkable transformation was correlated with slower extension of fewer, more stable lamellipodia leading to a reduced turning frequency. Hence, the loss of cofilin caused an amoeboid tumor cell to assume a mesenchymal-type mode of movement. These phenotypes were correlated with the loss of uniform chemotactic sensitivity of the cell surface to EGF stimulation, demonstrating that to chemotax efficiently, a cell must be able to respond to chemotactic stimulation at any region on its surface. The changes in cell shape, directional migration, and turning frequency were related to the re-localization of Arp2/3 complex to one pole of the cell upon suppression of cofilin expression.


1991 ◽  
Vol 30 (06) ◽  
pp. 290-293 ◽  
Author(s):  
P. Maleki ◽  
A. Martinezi ◽  
M. C. Crone-Escanye ◽  
J. Robert ◽  
L. J. Anghileri

The study of the interaction between complexed iron and tumor cells in the presence of 67Ga-citrate indicates that a phenomenon of iron-binding related to the thermodynamic constant of stability of the iron complex, and a hydrolysis (or anion penetration) of the interaction product determine the uptake of 67Ga. The effects of various parameters such as ionic composition of the medium, nature of the iron complex, time of incubation and number of cells are discussed.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Chunliang Shang ◽  
Jie Qiao ◽  
Hongyan Guo

AbstractThe pre-metastatic niche is a favorable microenvironment for the colonization of metastatic tumor cells in specific distant organs. Lipid droplets (LDs, also known as lipid bodies or adiposomes) have increasingly been recognized as lipid-rich, functionally dynamic organelles within tumor cells, immune cells, and other stromal cells that are linked to diverse biological functions and human diseases. Moreover, in recent years, several studies have described the indispensable role of LDs in the development of pre-metastatic niches. This review discusses current evidence related to the biogenesis, composition, and functions of LDs related to the following characteristics of the pre-metastatic niche: immunosuppression, inflammation, angiogenesis/vascular permeability, lymphangiogenesis, organotropism, reprogramming. We also address the function of LDs in mediating pre-metastatic niche formation. The potential of LDs as markers and targets for novel antimetastatic therapies will be discussed.


2021 ◽  
Vol 22 (6) ◽  
pp. 2911
Author(s):  
Lauren M. Kreps ◽  
Christina L. Addison

Metastasis to the bone is a common feature of many cancers including those of the breast, prostate, lung, thyroid and kidney. Once tumors metastasize to the bone, they are essentially incurable. Bone metastasis is a complex process involving not only intravasation of tumor cells from the primary tumor into circulation, but extravasation from circulation into the bone where they meet an environment that is generally suppressive of their growth. The bone microenvironment can inhibit the growth of disseminated tumor cells (DTC) by inducing dormancy of the DTC directly and later on following formation of a micrometastatic tumour mass by inhibiting metastatic processes including angiogenesis, bone remodeling and immunosuppressive cell functions. In this review we will highlight some of the mechanisms mediating DTC dormancy and the complex relationships which occur between tumor cells and bone resident cells in the bone metastatic microenvironment. These inter-cellular interactions may be important targets to consider for development of novel effective therapies for the prevention or treatment of bone metastases.


Sign in / Sign up

Export Citation Format

Share Document