β-Alumina Ceramics

Author(s):  
W. I. Abdel Fattah ◽  
A. T. Hussein
Keyword(s):  
2015 ◽  
Vol 57 (6) ◽  
pp. 495-498 ◽  
Author(s):  
Lidija Ćurković ◽  
Marijana Majić Renjo ◽  
Damir Ciglar

2021 ◽  
Vol 13 (12) ◽  
pp. 6739
Author(s):  
Darko Landek ◽  
Lidija Ćurković ◽  
Ivana Gabelica ◽  
Mihone Kerolli Mustafa ◽  
Irena Žmak

In this work, alumina (Al2O3) ceramics were prepared using an environmentally friendly slip casting method. To this end, highly concentrated (70 wt.%) aqueous suspensions of alumina (Al2O3) were prepared with different amounts of the ammonium salt of a polycarboxylic acid, Dolapix CE 64, as an electrosteric dispersant. The stability of highly concentrated Al2O3 aqueous suspensions was monitored by viscosity measurements. Green bodies (ceramics before sintering) were obtained by pouring the stable Al2O3 aqueous suspensions into dry porous plaster molds. The obtained Al2O3 ceramic green bodies were sintered in the electric furnace. Analysis of the effect of three sintering parameters (sintering temperature, heating rate and holding time) on the density of alumina ceramics was performed using the response surface methodology (RSM), based on experimental data obtained according to Box–Behnken experimental design, using the software Design-Expert. From the statistical analysis, linear and nonlinear models with added first-order interaction were developed for prediction and optimization of density-dependent variables: sintering temperature, heating rate and holding time.


Cerâmica ◽  
2019 ◽  
Vol 65 (suppl 1) ◽  
pp. 70-74 ◽  
Author(s):  
G. C. Ribeiro ◽  
B. A. Fortes ◽  
L. da Silva ◽  
J. A. Castro ◽  
S. Ribeiro

2003 ◽  
Vol 134 (1-2) ◽  
pp. 58-64 ◽  
Author(s):  
Hiroya Abe ◽  
Makio Naito ◽  
Tadashi Hotta ◽  
Hidehiro Kamiya ◽  
Keizo Uematsu

2015 ◽  
Vol 1112 ◽  
pp. 519-523 ◽  
Author(s):  
Jarot Raharjo ◽  
Sri Rahayu ◽  
Tika Mustika ◽  
Masmui ◽  
Dwi Budiyanto

Observation on the effect of adding titanium oxide (TiO2) and magnesium oxide (MgO) on the sintering of α-alumina (Al2O3) has been performed. In this study, technical alumina used as basic material in which the sample is formed by the pressureless sintering/cold press and sintered at 1500°C which is lower than alumina sintering temperature at 1700°C. Elemental analysis, observation of microstructure, hardness, fracture toughness and density measurements were carried out to determine the physical and mechanical properties of alumina. The results indicate a change in the microstructure where the content of the platelet structure are much more than the equilateral structure. At sintering temperature of 1500°C, neck growth occurs at ceramics grain, supported by the results of the density test which indicate perfect compaction has occurred in this process.


2016 ◽  
Vol 57 (3) ◽  
pp. 392-396 ◽  
Author(s):  
Mayur Shukla ◽  
Sumana Ghosh ◽  
Nandadulal Dandapat ◽  
Ashis K. Mandal ◽  
Vamsi K. Balla

Sign in / Sign up

Export Citation Format

Share Document