Massive Kaluza-Klein Theories and Bound States in Yang-Mills

Author(s):  
L. Dolan
Keyword(s):  
1986 ◽  
Vol 41 (12) ◽  
pp. 1399-1411
Author(s):  
H. Stumpf

The model is defined by a selfregularizing nonlinear spinor-isospinor preon field equation and all observable (elementary and non-elementary) particles are assumed to be bound states o f the quantized preon field. In a series o f preceding papers this model was extensively studied. In particular for com posite electroweak bosons the Yang-Mills dynamics was derived as the effective dynamics o f these bosons. In this paper the first generation o f com posite leptons and com posite Han-Nam bu quarks is introduced and together with electroweak bosons, these particles are interpreted as “shell model” states o f the underlying preon field. The choice o f the shell model states is justified by deriving the effective fermion-boson coupling and demonstrating its equivalence with the phenom enological electroweak coupling terms o f the Weinberg-Salam model. The investigation is restricted to the left-handed parts o f the composite fermions. Color is revealed to be a hidden orbital angular momentum in the shell model and hypercharge follows from the effective coupling. The techniques o f deriving effective interactions is a “weak mapping” procedure and the calculations are done in the “low” energy limit.


1989 ◽  
Vol 04 (07) ◽  
pp. 1681-1733 ◽  
Author(s):  
C. D. ROBERTS ◽  
J. PRASCHIFKA ◽  
R. T. CAHILL

We consider the quantum field theory of a model of an extended Nambu-Jona-Lasinio type with a QCD based nonlocal fermion current-current interaction which has global SU(Nc) symmetry. We obtain an exact bosonization of this model in four Euclidean dimensions using auxiliary bilocal fields and discuss the dynamical breakdown of chiral symmetry in the massless fermion limit. A local field bosonization is obtained by decomposing the bilocal fields in terms of complete orthonormal sets of functions with the expansion coefficients, which are local functions, identified as the local meson fields. Retaining the ground state pseudoscalar, vector and pseudovector local fields we obtain a local effective action for this sector of the theory. The derivative expansion of the fermionic determinant necessary to obtain this local action is self-regularizing because of the bilocal substructure present in the model which is manifest in the form factors that are associated with the local fields. In our local action the value of each coefficient depends critically on the underlying fermionic dynamics through these form factors and the vacuum functions. As a consequence of this the vector and pseudovector fields in the theory are best interpreted as simple fermion-antifermion bound states rather than as massive Yang-Mills fields or exotic composites of the pseudoscalars; interpretations that we find are not in general admitted when models such as the GCM are treated correctly. Identifying then the physical vector and pseudovector fields with the linearly transforming chiral partners introduced by the bosonization, we obtain an effective action for this sector of the meson spectrum which predicts values for the kinematic and dynamic quantities associated with these fields.


2006 ◽  
Vol 21 (28n29) ◽  
pp. 5905-5956 ◽  
Author(s):  
MATEJ PAVŠIČ

A theory in which four-dimensional space–time is generalized to a larger space, namely a 16-dimensional Clifford space (C-space) is investigated. Curved Clifford space can provide a realization of Kaluza–Klein. A covariant Dirac equation in curved C-space is explored. The generalized Dirac field is assumed to be a polyvector-valued object (a Clifford number) which can be written as a superposition of four independent spinors, each spanning a different left ideal of Clifford algebra. The general transformations of a polyvector can act from the left and/or from the right, and form a large gauge group which may contain the group U (1) × SU (2) × SU (3) of the standard model. The generalized spin connection in C-space has the properties of Yang–Mills gauge fields. It contains the ordinary spin connection related to gravity (with torsion), and extra parts describing additional interactions, including those described by the antisymmetric Kalb–Ramond fields.


2017 ◽  
Vol 2017 (9) ◽  
Author(s):  
Yusuke Sakata ◽  
Robin Schneider ◽  
Yuji Tachikawa ◽  
Takemasa Yamaura
Keyword(s):  

2011 ◽  
Vol 08 (06) ◽  
pp. 1225-1238 ◽  
Author(s):  
IZUMI TANAKA ◽  
SEIJI NAGAMI

The purpose of this study is to examine the effect of topology change in the initial universe. In this study, the concept of G-cobordism is introduced to argue about the topology change of the manifold on which a transformation group acts. This G-manifold has a fiber bundle structure if the group action is free and is related to the spacetime in Kaluza–Klein theory or Einstein–Yang–Mills system. Our results revealed the fundamental processes of compactification in G-manifolds. In these processes, the initial high symmetry and multidimensional universe changes to present universe by the mechanism which lowers the dimensions and symmetries.


2001 ◽  
Vol 16 (09) ◽  
pp. 557-569 ◽  
Author(s):  
YU. P. GONCHAROV

The black hole physics techniques and results are applied to find a set of exact solutions of the SU(3)-Yang–Mills equations in Minkowski space–time in the Lorentz gauge. All the solutions contain only the Coulomb-like or linear in r components of SU(3)-connection. This allows one to obtain some possible exact and approximate solutions of the corresponding Dirac equation that can describe the relativistic bound states. Possible application to the relativistic models of mesons is also outlined.


1986 ◽  
Vol 64 (5) ◽  
pp. 624-632 ◽  
Author(s):  
H. C. Lee

Some aspects of recent development in the light-cone gauge and its special role in quantum-field theories are reviewed. Topics discussed include the two- and four-component formulations of the light-cone gauge, Slavnov–Taylor and Becchi– Rouet–Stora identities, quantum electrodynamics, quantum chromodynamics, renormalization of Yang–Mills theory and supersymmetric theory, gravity, and the quantum-induced compactification of Kaluza–Klein theories in the light-cone gauge.


1998 ◽  
Vol 58 (12) ◽  
Author(s):  
F. Antonuccio ◽  
H. C. Pauli ◽  
S. Pinsky ◽  
S. Tsujimaru

2013 ◽  
Vol 28 (10) ◽  
pp. 1350034 ◽  
Author(s):  
M. A. L. CAPRI ◽  
D. DUDAL ◽  
M. S. GUIMARAES ◽  
L. F. PALHARES ◽  
S. P. SORELLA

We study a toy model for an interacting scalar field theory in which the fundamental excitations are confined in the sense of having unphysical, positivity-violating propagators, a fact tracing back to a decomposition of these in propagators with complex conjugate mass poles (the so-called i-particles). Similar two-point functions show up in certain approaches to gluon or quark propagators in Yang–Mills gauge theories. We investigate the spectrum of our model and show that suitable composite operators may be constructed having a well-defined Källén–Lehmann spectral representation, thus allowing for a particle interpretation. These physical excitations would correspond to the "mesons" of the model, the latter being bound states of two unphysical i-particles. The meson mass is explicitly estimated from the pole emerging in a resummed class of diagrams. The main purpose of this paper is thus to explicitly verify how a real mass pole can and does emerge out of constituent i-particles that have complex masses.


Sign in / Sign up

Export Citation Format

Share Document