Real Time Remote Monitoring and Measurement of Loss due to Dry Flue Gas for an Industrial Boiler

Author(s):  
C. L. Chayalakshmi ◽  
D. S. Jangamshetti ◽  
Savita Sonoli
2018 ◽  
Vol 14 (01) ◽  
pp. 4
Author(s):  
Wang Weidong

To improve the efficiency of the remote monitoring system for logistics transportation, we proposed a remote monitoring system based on wireless sensor network and GPRS communication. The system can collect information from the wireless sensor network and transmit the information to the ZigBee interpreter. The monitoring system mainly includes the following parts: Car terminal, GPRS transmission network and monitoring center. Car terminal mainly consists by the Zigbee microcontroller and peripherals, wireless sensor nodes, RFID reader, GPRS wireless communication module composed of a micro-wireless monitoring network. The information collected by the sensor communicates through the GPRS and the monitoring center on the network coordinator, sends the collected information to the monitoring center, and the monitoring center realizes the information of the logistics vehicle in real time. The system has high applicability, meets the design requirements in the real-time acquisition and information transmission of the information of the logistics transport vehicles and goods, and realizes the function of remote monitoring.


2005 ◽  
Vol 49 (2) ◽  
pp. 272-285 ◽  
Author(s):  
Joshua Mendoza-Jasso ◽  
Gerardo Ornelas-Vargas ◽  
Rodrigo Castañeda-Miranda ◽  
Eusebio Ventura-Ramos ◽  
Alfredo Zepeda-Garrido ◽  
...  

2021 ◽  
Vol 309 ◽  
pp. 01121
Author(s):  
G Sandhya Rani ◽  
U Vijaya Laxmi ◽  
P Srividya Devi ◽  
M Naga Sandhya Rani

The objective of this paper is to monitor the electrical parameters like voltage, current, etc., remotely and display all the obtained real time values for a substation isolate. This paper is furnished to assure the load and electrical system equipment by the activation of relay, whenever the acquired parameters exceed the predefined values. Generally, this Proposed system design makes use of microcontroller, but the prototype of this circuit modelled in Proteus and can be executed by using ATmega 168 microcontroller. When supply is given to the designed hardware, all the sensors start sensing their respective parameters i. e., voltage, current, temperature etc., and modernize all the values on the display. Comparison between the problem-solving time values and the preordained values is continuously carried out by the microcontroller, if any of these values go beyond the pre-defined values, it sends fault alert to the relay, updates it on the screen and sends the same as an SMS through GSM for the rectification.


2021 ◽  
Vol 4 (2) ◽  
pp. 94-111
Author(s):  
Mamay Syani ◽  
Bayu Saputro

Perkembangan teknologi informasi dan khususnya jaringan sangatlah pesat oleh karena itu dibutuhkan sistem jaringan komputer yang sangat canggih. Dimana permasalahan yang sering terjadi disebuah perusahaan ataupun institusi yang sudah memakai server sering sekali kurangnya fleksibilitas dalam pengawasan server karena mudah sekali terjadi human error yang mengarah kepada admin jaringan yang bertugas untuk mengawasi server. Sebagai solusi dari permasalahan tersebut dengan menggunakan sistem Zabbix sebagai Network Monitoring System karena Zabbix sudah memiliki tampilan GUI berupa map dan grafik sehingga membantu pengaturan administrasi maupun sistemnya. Implementasi Bot sudah banyak digunakan dengan keunggulan dalam keandalan untuk menyediakan data ke pengguna yang tidak terbatas oleh waktu. Dengan Bot ini admin jaringan dengan mengirimkan perintah ke Bot maka informasi yang diinginkan akan diberikan ke admin jaringan tanpa harus mengecek langsung kondisi server secara real time.


2021 ◽  
Author(s):  
Yatharth Ranjan ◽  
Malik Althobiani ◽  
Joseph Jacob ◽  
Michele Orini ◽  
Richard Dobson ◽  
...  

BACKGROUND Chronic Lung disorders like COPD and IPF are characterised by exacerbations which are a significant problem: unpleasant for patients, and sometimes severe enough to cause hospital admission (and therefore NHS pressures) and death. Reducing the impact of exacerbations is very important. Moreover, due to the COVID-19 pandemic, the vulnerable populations with these disorders are at high risk and hence their routine care cannot be done properly. Remote monitoring offers a low cost and safe solution of gaining visibility into the health of people in their daily life. Thus, remote monitoring of patients in their daily lives using mobile and wearable devices could be useful especially in high vulnerability groups. A scenario we consider here is to monitor patients and detect disease exacerbation and progression and investigate the opportunity of detecting exacerbations in real-time with a future goal of real-time intervention. OBJECTIVE The primary objective is to assess the feasibility and acceptability of remote monitoring using wearable and mobile phones in patients with pulmonary diseases. The aims will be evaluated over these areas: Participant acceptability, drop-out rates and interpretation of data, Detection of clinically important events such as exacerbations and disease progression, Quantification of symptoms (physical and mental health), Impact of disease on mood and wellbeing/QoL and The trajectory-tracking of main outcome variables, symptom fluctuations and order. The secondary objective of this study is to provide power calculations for a larger longitudinal follow-up study. METHODS Participants will be recruited from 2 NHS sites in 3 different cohorts - COPD, IPF and Post hospitalised Covid. A total of 60 participants will be recruited, 20 in each cohort. Data collection will be done remotely using the RADAR-Base mHealth platform for different devices - Garmin wearable devices, smart spirometers, mobile app questionnaires, surveys and finger pulse oximeters. Passive data collected includes wearable derived continuous heart rate, SpO2, respiration rate, activity, and sleep. Active data collected includes disease-specific PROMs, mental health questionnaires and symptoms tracking to track disease trajectory in addition to speech sampling, spirometry and finger Pulse Oximetry. Analyses are intended to assess the feasibility of RADAR-Base for lung disorder remote monitoring (include quality of data, a cross-section of passive and active data, data completeness, the usability of the system, acceptability of the system). Where adequate data is collected, we will attempt to explore disease trajectory, patient stratification and identification of acute clinically interesting events such as exacerbations. A key part of this study is understanding the potential of real-time data collection, here we will simulate an intervention using the Exacerbation Rating Scale (ERS) to acquire responses at-time-of-event to assess the performance of a model for exacerbation identification from passive data collected. RESULTS RALPMH study provides a unique opportunity to assess the use of remote monitoring in the study of lung disorders. The study is set to be started in mid-May 2021. The data collection apparatus, questionnaires and wearable integrations have been set up and tested by clinical teams. While waiting for ethics approval, real-time detection models are currently being constructed. CONCLUSIONS RALPMH will provide a reference infrastructure for the use of wearable data for monitoring lung diseases. Specifically information regarding the feasibility and acceptability of remote monitoring and the potential of real-time remote data collection and analysis in the context of chronic lung disorders. Moreover, it provides a unique standpoint to look into the specifics of novel coronavirus without burdensome interventions. It will help plan and inform decisions in any future studies that make use of remote monitoring in the area of Respiratory health. CLINICALTRIAL https://www.isrctn.com/ISRCTN16275601


2021 ◽  
Vol 73 (01) ◽  
pp. 65-66
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 197168, “Digitalize Asset-Integrity Management by Remote Monitoring,” by Mohamed Sahid, ADNOC, prepared for the 2019 Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, 11-14 November. The paper has not been peer reviewed. Monitoring of corrosion in process pipelines has always been of paramount importance in ensuring plant-asset integrity. Similarly, steam traps play an important role in ensuring steam quality and, thus, the integrity of critical assets in the plant. The complete paper discusses these two aspects of monitoring asset integrity - real-time corrosion monitoring and real-time steam-trap monitoring - as implemented by the operator. The authors highlight the importance of digitization by means of implementing wireless technology and making data available in remote work stations in real time. Real-Time Corrosion-Monitoring System Corrosion coupons and electrical resistance probes are among the most-tried and -tested methods to monitor corrosion, but the authors detail shortcomings of these systems, focusing their efforts on the option of using nonintrusive ultrasonic sensors for corrosion monitoring. Fixed ultrasonic thickness (UT) monitoring systems measure a localized thickness of vessel wall or pipe through the use of sound waves. They are the fastest method to measure wall thickness and wall loss reliably. The wall thickness is calculated from the reflection of the ultrasonic signal at both external and internal surfaces. UT systems normally include a transducer and a pulser/receiver. The type of transducer used for this application is the ultrasonic transducer, which can be either piezoelectric or variable-capacitive. The pulser generates short electric pulses of energy at a constant rate, which are converted by the transducer into short, high-frequency ultrasonic sound pulses. These pulses are then directed into the material. Any discontinuation or impurity in the path of the ultrasonic sound wave will be reflected and received by the transducer, transformed into an electric signal, and amplified by the receiver to be projected onto the display (in the case of portable UT instruments). Depending on the intensity shown on the display, information about the impurity or discontinuity, such as size, orientation, and location, can be derived accurately. The shortcomings of using portable UT sensors have been overcome by the introduction of permanent UT sensors, which provide wall-thickness measurement continuously at one location in real time. Because these sensors remain fixed at one location for years, it is possible to analyze corrosion at a single point over time, thus detecting early corrosion onset. Real-Time UT Gauging. The operator installed the real-time corrosion-monitoring system in its offshore associated gas (OAG) unit. A UK-based vendor provided UT sensors along with data-management and -viewing software to support data interpretation. Twenty locations were identified in various plants of the OAG unit on the basis of criticality and previously recorded corrosion levels.


2013 ◽  
Vol 53 (A) ◽  
pp. 807-810
Author(s):  
I. I. Yashin ◽  
N. V. Ampilogov ◽  
I.I. Astapov ◽  
N.S. Barbashina ◽  
V.V. Borog ◽  
...  

Muon diagnostics is a technique for remote monitoring of active processes in the heliosphere and the magnetosphere of the Earth based on the analysis of angular variations of muon flux simultaneously detected from all directions of the upper hemisphere. To carry out muon diagnostics, special detectors – muon hodoscopes – which can detect muons from any direction with good angular resolution in real-time mode are required. We discuss approaches to data analysis and the results of studies of various extra-terrestrial processes detected by means of the wide aperture URAGAN muon hodoscope.


Sign in / Sign up

Export Citation Format

Share Document