Self-Sustained Nuclei-Assisted Explosive Crystallization

2002 ◽  
pp. 91-101
Author(s):  
V. P. Koverda ◽  
V. N. Skokov
2019 ◽  
Vol 11 (2) ◽  
pp. 02004-1-02004-5
Author(s):  
T. L. Tsaregradskaya ◽  
◽  
Yu. A. Kunitskyi ◽  
О. О. Kаlenyk ◽  
I. V. Plyushchay ◽  
...  

1989 ◽  
Vol 157 ◽  
Author(s):  
P.A. Stolk ◽  
A. Polman ◽  
W.C. Sinke

ABSTRACTPulsed laser irradiation is used to induce epitaxial explosive crystallization of amorphous silicon layers buried in a (100) oriented crystalline matrix. This process is mediated by a self-propagating liquid layer. Time-resolved determination of the crystallization speed combined with numerical calculation of the interface temperature shows that freezing in silicon saturates at 16 m/s for large undercooling (> 130 K). A comparison between data and different models for melting and freezing indicates that the crystallization behavior at large undercooling can be described correctly if the rate-limiting factor is assumed to be diffusion in liquid Si at the solid/liquid interface.


1993 ◽  
Vol 321 ◽  
Author(s):  
Riccardo Reitanot ◽  
Patrick M. Smith ◽  
Michael J. Aziz

ABSTRACTAt the high growth rates accessible during pulsed-laser induced melting and solidification and explosive crystallization, crystal growth kinetics are dominated not by equilibrium thermodynamics, but by the atomistic mechanisms by which crystallization proceeds. These Mechanisms can be probed by testing the predictions of solute trapping models based on various crystal/Melt interface structures against Measurements. We have measured the dependence of solute trapping of several group III, IV, and V elements in silicon on both interface orientation and crystallization speed. The Aperiodic Stepwise Growth Model of Goldman and Aziz accurately fits both the velocity and orientation dependence of the solute trapping observed in these systems. The success of the model implies a ledge structure for the crystal/Melt interface and a step-flow mechanism for crystal growth. In addition, we have observed an empirical inverse correlation between the two free parameters (“diffusive speeds”) in this model and the equilibrium solute partition coefficient of a system. This correlation may be used to estimate values of the diffusive speeds for other systems in which solute trapping has not been or cannot be Measured.


2015 ◽  
Vol 117 (24) ◽  
pp. 245301 ◽  
Author(s):  
Christoph Buchner ◽  
Wilhelm Schneider

1981 ◽  
Vol 4 ◽  
Author(s):  
G. Auvert ◽  
D. Bensahel ◽  
A. Perio ◽  
F. Morin ◽  
G.A. Rozgonyi ◽  
...  

ABSTRACTExplosive Crystallization occurs in cw laser annealing on a-Si films deposited on glass substrates at laser scan speeds higher than 30 cm/sec. Optical, structural and electrical properties of the crystallized films at various laser scan speeds confirm the existence of two kinds of explosive growth depending on the state of crystallinity of the starting material.


1975 ◽  
Vol 16 (3) ◽  
pp. 311-314 ◽  
Author(s):  
R. Messier ◽  
T. Takamori ◽  
R. Roy

Sign in / Sign up

Export Citation Format

Share Document