Review of the Characteristics of Six Cell Lines with Langerhans Cell Phenotype

Author(s):  
Rafael Nunez
1992 ◽  
Vol 31 (2) ◽  
pp. 189-197 ◽  
Author(s):  
Gertrud Rossi ◽  
Nikolaus Heveker ◽  
Bernhard Thiele ◽  
Hans Gelderblom ◽  
Falko Steinbach

2001 ◽  
Vol 125 (7) ◽  
pp. 958-960
Author(s):  
Shiyong Li ◽  
Michael J. Borowitz

Abstract Although there is a close association between Langerhans cell histiocytosis and malignant neoplasms, simultaneous occurrence of lymphoblastic lymphoma and Langerhans cell histiocytosis in the same lymph node is an extremely rare finding. Herein, we describe such a case in a 26-year-old woman who presented with progressive cervical lymphadenopathy. The lymphoma cells have an immature T-cell phenotype (terminal deoxynucleotidyl transferase+, HLA-DR+, CD34+, CD38+, and CD7+) with expression of both CD3 and CD79a on immunohistochemical stain. The Langerhans cells are present focally with the characteristic morphologic features and immunophenotype (CD1a+ and S100+). The significance of CD79a coexpression in T-cell lymphoblastic lymphoma and the association between lymphoblastic lymphoma and Langerhans cell histiocytosis are discussed.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Wei Xin Cai ◽  
Li Wu Zheng ◽  
Li Ma ◽  
Hong Zhang Huang ◽  
Ru Qing Yu ◽  
...  

Tumorigenicity and metastatic activity can be visually monitored in cancer cells that were labelled with stable fluorescence. The aim was to establish and validate local and distant spread of subcutaneously previously injected fluorescence transduced human tongue cancer cell lines of epithelial and mesenchymal phenotype in nude mice. A total of 32 four-week-old male athymic Balb/c nude mice were randomly allocated into 4 groups (n=8). A single dose of 0.3 mL PBS containing 1 × 107 of four different cancer cell-lines (UM1, UM1-GFP, UM2, and UM2-RFP) was injected subcutaneously into the right side of their posterolateral back. Validity assessment of the labelled cancer cells’ tumorigenicity was assessed by physical examination, imaging, and histology four weeks after the injection. The tumor take rate of cancer cells was similar in animals injected with either parental or transduced cancer cells. Transduced cancer cells in mice were easily detectable in vivo and after cryosection using fluorescent imaging. UM1 cells showed increased tumor take rate and mean tumor volume, presenting with disorganized histopathological patterns. Fluorescence labelled epithelial and mesenchymal human tongue cancer cell lines do not change in tumorigenicity or cell phenotype after injection in vivo.


Blood ◽  
1989 ◽  
Vol 73 (2) ◽  
pp. 566-572
Author(s):  
C Duperray ◽  
B Klein ◽  
BG Durie ◽  
X Zhang ◽  
M Jourdan ◽  
...  

Multiple myeloma (MM) is a B-cell malignancy characterized by the accumulation, primarily in bone marrow, of a clone of plasma cells. The nature of the stem cells feeding the tumoral compartment is still unknown. To investigate this special point, we have studied the phenotypes of nine well-known human myeloma cell lines (HMCLs) and compared them with those of normal lymphoblastoid cell lines (LCLs). Twenty-four clusters of differentiation involved in B lymphopoiesis were investigated using a panel of 65 monoclonal antibodies (MoAbs). For each cluster, the percentage of positive cells and the antigen density were determined, giving rise to a “quantitative phenotype”. We thus classified the HMCLs into two different groups: those with cytoplasmic mu chains (c mu+) and those without (c mu-). In the first (c mu+) group, comprising seven cell lines, the HMCLs had a phenotype of pre-B/B cells close to that of Burkitt's lymphoma cell lines. They expressed low densities of surface mu chains, without detectable cytoplasmic or surface light chains. Three of them were infected with the Epstein Barr virus (EBV). These c mu+ HMCLs bore most of the B-cell antigens except CD23. They expressed the CALLA antigen (CD10) and lacked the plasma-cell antigen PCA1. In contrast, LCLs expressed surface light chains, high densities of CD23, low densities of PCA1 antigen, and no CD10 antigen. The c mu- HMCLs had a plasma-cell phenotype, lacking most of the B-cell antigens and expressing high densities of PCA1 antigen.(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 50 (4) ◽  
pp. 589-592 ◽  
Author(s):  
Vidar Wendel-Hansen ◽  
Wen Tao ◽  
Mats Ericson ◽  
George Klein ◽  
Anders Rosen

Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 362 ◽  
Author(s):  
Shuai Hao ◽  
Shuang Li ◽  
Jing Wang ◽  
Lei Zhao ◽  
Yan Yan ◽  
...  

Phycocyanin, derived from Spirulina platensis, is a type of natural antineoplastic marine protein. It is known that phycocyanin exerts anticancer effects on non-small-cell lung cancer (NSCLC) cells, but its underlying mechanism has not been elucidated. Herein, the antitumor function and regulatory mechanism of phycocyanin were investigated in three NSCLC cell lines for the first time: H358, H1650, and LTEP-a2. Cell phenotype experiments suggested that phycocyanin could suppress the survival rate, proliferation, colony formation, and migration abilities, as well as induce apoptosis of NSCLC cells. Subsequently, transcriptome analysis revealed that receptor-interacting serine/threonine-protein kinase 1 (RIPK1) was significantly down-regulated by phycocyanin in the LTEP-a2 cell, which was further validated by qRT-PCR and Western blot analysis in two other cell lines. Interestingly, similar to phycocyanin-treated assays, siRNA knockdown of RIPK1 expression also resulted in growth and migration inhibition of NSCLC cells. Moreover, the activity of NF-κB signaling was also suppressed after silencing RIPK1 expression, indicating that phycocyanin exerted anti-proliferative and anti-migratory function through down-regulating RIPK1/NF-κB activity in NSCLC cells. This study proposes a mechanism of action for phycocyanin involving both NSCLC apoptosis and down regulation of NSCLC genes.


Blood ◽  
1994 ◽  
Vol 83 (2) ◽  
pp. 452-459 ◽  
Author(s):  
H Chang ◽  
S Benchimol ◽  
MD Minden ◽  
HA Messner

Abstract We derived the lymphoma cell lines OCI-Ly 13.1 and OCI-Ly 13.2 from a patient with non-Hodgkin's lymphoma at the time of presentation and during chemotherapy-resistant relapse. These lines were of T-cell phenotype and contained the identical T-cell receptor beta-chain rearrangement, indicating that both lines were members of the same malignant clone. The lines differed in their growth characteristics; OCI-Ly 13.1 grew slowly and required growth factors for colony formation, whereas OCI-Ly 13.2 grew rapidly and formed colonies without addition of growth factors. To test whether or not these biologic differences were associated with specific genetic changes, we evaluated the status of the c-myc and p53 genes of both cell lines. The p53 and c- myc genes of OCI-Ly 13.1 were in germline configuration and produced normal-sized transcripts. The p53 protein expressed in OCI-Ly 13.1 was recognized by the anti-p53 monoclonal antibody, PAb240, indicating a conformation typical of p53 proteins expressed by p53 alleles containing a missense mutation. However, sequencing studies of the entire p53 coding region did not reveal any point mutations. In contrast, the cell line OCI-Ly 13.2 contained structural abnormalities of both the c-myc and p53 genes. In addition, one of the p53 alleles was lost as determined by a cDNA probe for the p53 gene (17p 13.1) and the YNZ22.1 probe (17p 13.3). These changes resulted in the absence of p53 protein and mRNA in OCI-Ly 13.2 as detected by immunoprecipitation and Northern blot analysis, respectively. They may be a reflection of disease progression and may be associated with the altered behavior of the malignant cell population within the patient and in vitro.


Blood ◽  
1985 ◽  
Vol 65 (1) ◽  
pp. 100-106 ◽  
Author(s):  
HN Steinberg ◽  
AS Tsiftsoglou ◽  
SH Robinson

Abstract The human leukemic cell lines K562 and HL-60 were cocultured with normal bone marrow (BM) cells. Coculture with 10(4) K562 or HL-60 cells results in 50% inhibition of normal CFU-E and BFU-E colony formation. However, when the same number of K562 and HL-60 cells is first treated for two to five days with agents that induce their differentiation, a gradual loss in their capacity to inhibit CFU-E and BFU-E colony formation is observed. The inhibitory material in K562 cells is soluble and present in conditioned medium from cultures of these cells. The degree to which leukemic cell suppression of CFU-E and BFU-E growth is reversed is correlated with the time of exposure to the inducing agent. Suppression is no longer evident after five days of prior treatment with inducers. In fact, up to a 90% stimulation of CFU-E growth is observed in cocultures with K562 cells that have been pretreated with 30 to 70 mumol/L hemin for five days. K562 cells treated with concentrations of hemin as low as 30 mumol/L demonstrate increased hemoglobin synthesis and grow normally, but no longer have an inhibitory effect on CFU-E growth. Hence, reversal of normal BM growth inhibition must be caused by the more differentiated state of the K562 cells and not by a decrease in the number of these cells with treatment. Thus, induction of differentiation in cultured leukemic cells not only alters the malignant cell phenotype but also permits improved growth of accompanying normal marrow progenitor cells. Both are desired effects of chemotherapy.


Author(s):  
John C. Nolan ◽  
Manuela Salvucci ◽  
Steven Carberry ◽  
Ana Barat ◽  
Miguel F. Segura ◽  
...  

Neuroblastoma (NB) is a neural crest-derived tumor, which develops before birth or in early childhood, with metastatic dissemination typically preceding diagnosis. Tumors are characterized by a highly heterogeneous combination of cellular phenotypes demonstrating varying degrees of differentiation along different lineage pathways, and possessing distinct super-enhancers and core regulatory circuits, thereby leading to highly varied malignant potential and divergent clinical outcomes. Cytoskeletal reorganization is fundamental to cellular transformations, including the processes of cellular differentiation and epithelial to mesenchymal transition (EMT), previously reported by our lab and others to coincide with chemotherapy resistance and enhanced metastatic ability of tumor cells. This study set out to investigate the ability of the neuronal miR-124-3p to reverse the cellular transformation associated with drug resistance development and assess the anti-oncogenic role of this miRNA in in vitro models of drug-resistant adrenergic (ADRN) and mesenchymal (MES) neuroblastoma cell lines. Low expression of miR-124-3p in a cohort of neuroblastomas was significantly associated with poor overall and progression-free patient survival. Over-expression of miR-124-3p in vitro inhibited cell viability through the promotion of cell cycle arrest and induction of apoptosis in addition to sensitizing drug-resistant cells to chemotherapeutics in a panel of morphologically distinct neuroblastoma cell lines. Finally, we describe miR-124-3p direct targeting and repression of key up-regulated cytoskeletal genes including MYH9, ACTN4 and PLEC and the reversal of the resistance-associated EMT and enhanced invasive capacity previously reported in our in vitro model (SK-N-ASCis24).


Sign in / Sign up

Export Citation Format

Share Document