Quantitative Ultrasonic Characterization of Interfacial Adhesion in Metal-Polymer-Metal Multilayer Composites

Author(s):  
L. Piché ◽  
D. Lévesque ◽  
P. Deprez ◽  
A. Michel ◽  
J. Tatibouët
2008 ◽  
Vol 80 (11) ◽  
pp. 2425-2437 ◽  
Author(s):  
Dmitri N. Muraviev ◽  
Patricia Ruiz ◽  
Maria Muñoz ◽  
Jorge Macanás

Stabilization of metal nanoparticles (MNPs) in polymeric matrices of different types has proven to be one of the most promising strategies to prevent their aggregation and to retain their properties. Polymer-stabilized MNPs (PSMNPs) and those based on polymer-metal nanocomposite materials are starting to find wide application in various fields of science and technology. In this paper, we demonstrate that metal-polymer nanocomposite membranes (MPNCMs) containing MNPs can easily be prepared in an ion-exchange such as, for example, sulfonated polyetherether ketone (SPEEK) matrix by using the polymeric membranes as nanoreactors for synthesis and to characterize the composition and structure of the formed MNPs. Metal ions (or metal ion complexes) are first incorporated into the polymeric matrix where they undergo reduction, leading to formation of corresponding MPNCMs. Since this technique allows successive metal loading-reduction cycles to be carried out, it enables synthesis of both monometallic and bimetallic (e.g., core-shell) MNPs. The proposed approach is illustrated by synthesis and characterization of MPNCMs containing both monometallic and bimetallic core-shell MNPs, formed by combinations of Pd, Pt, Co, Ni, and Cu, along with their application in electrochemical sensor and biosensor constructions.


2015 ◽  
Vol 84 (8) ◽  
pp. 591-595 ◽  
Author(s):  
Yukiko IZUMI ◽  
Naoki BADEN ◽  
Kazuhiro MATSUDA

2019 ◽  
pp. 089270571987822
Author(s):  
Saud Aldajah ◽  
Mohammad Y Al-Haik ◽  
Waseem Siddique ◽  
Mohammad M Kabir ◽  
Yousef Haik

This study reveals the enhancement of mechanical and thermal properties of maleic anhydride-grafted polypropylene (PP- g-MA) with the addition of nanocrystalline cellulose (NCC). A nanocomposite was manufactured by blending various percentages of PP, MA, and NCC nanoparticles by means of a twin-screw extruder. The influence of varying the percentages of NCC on the mechanical and thermal behavior of the nanocomposite was studied by performing three-point bending, nanoindentation, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy tests. The novelty of this study stems on the NCC nanoparticles and their ability to enhance the mechanical and thermal properties of PP. Three-point bending and nanoindentation tests revealed improvement in the mechanical properties in terms of strength, modulus, and hardness of the PP- g-MA nanocomposites as the addition of NCC increased. SEM showed homogeneity between the mixtures which proved the presence of interfacial adhesion between the PP- g-MA incorporated with NCC nanoparticles that was confirmed by the FTIR results. DSC and TGA measurements showed that the thermal stability of the nanocomposites was not compromised due to the addition of the coupling agent and reinforced nanoparticles.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 818
Author(s):  
Jonas Richter ◽  
Moritz Kuhtz ◽  
Andreas Hornig ◽  
Mohamed Harhash ◽  
Heinz Palkowski ◽  
...  

Metallic (M) and polymer (P) materials as layered hybrid metal-polymer-metal (MPM) sandwiches offer a wide range of applications by combining the advantages of both material classes. The interfaces between the materials have a considerable impact on the resulting mechanical properties of the composite and its structural performance. Besides the fact that the experimental methods to determine the properties of the single constituents are well established, the characterization of interface failure behavior between dissimilar materials is very challenging. In this study, a mixed numerical–experimental approach for the determination of the mode I energy release rate is investigated. Using the example of an interface between a steel (St) and a thermoplastic polyolefin (PP/PE), the process of specimen development, experimental parameter determination, and numerical calibration is presented. A modified design of the Double Cantilever Beam (DCB) is utilized to characterize the interlaminar properties and a tailored experimental setup is presented. For this, an inverse calibration method is used by employing numerical studies using cohesive elements and the explicit solver of LS-DYNA based on the force-displacement and crack propagation results.


Sign in / Sign up

Export Citation Format

Share Document