Vaccine Development: Progression from Target Antigen to Product

Author(s):  
Ronald W. Ellis
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Blaženka D. Letinić ◽  
Marinela Contreras ◽  
Yael Dahan-Moss ◽  
Ingrid Linnekugel ◽  
José de la Fuente ◽  
...  

Abstract Background Anopheles arabiensis is an opportunistic malaria vector that rests and feeds outdoors, circumventing current indoor vector control methods. Furthermore, this vector will readily feed on both animals and humans. Targeting this vector while feeding on animals can provide an additional intervention for the current vector control activities. Previous results have displayed the efficacy of using Subolesin/Akirin ortholog vaccines for the control of multiple ectoparasite infestations. This made Akirin a potential antigen for vaccine development against An. arabiensis. Methods The efficacy of three antigens, namely recombinant Akirin from An. arabiensis, recombinant Akirin from Aedes albopictus, and recombinant Q38 (Akirin/Subolesin chimera) were evaluated as novel interventions for An. arabiensis vector control. Immunisation trials were conducted based on the concept that mosquitoes feeding on vaccinated balb/c mice would ingest antibodies specific to the target antigen. The antibodies would interact with the target antigen in the arthropod vector, subsequently disrupting its function. Results All three antigens successfully reduced An. arabiensis survival and reproductive capacities, with a vaccine efficacy of 68–73%. Conclusions These results were the first to show that hosts vaccinated with recombinant Akirin vaccines could develop a protective response against this outdoor malaria transmission vector, thus providing a step towards the development of a novel intervention for An. arabiensis vector control. Graphic Abstract


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4144-4144
Author(s):  
Alex S. Hartlage ◽  
Tom Liu ◽  
John T. Patton ◽  
Sabrina L Garman ◽  
Xiaoli Zhang ◽  
...  

Abstract The Epstein-Barr virus (EBV) is an oncogenic, γ-herpesvirus associated with a broad spectrum of disease. While most immune-competent individuals can effectivley develop efficient adaptive immune responses to EBV, immunocompromised individuals are at serious risk for developing lifethreatening pathology such as Hodgkin’s lymphoma and post-transplant lymphoproliferative disorder (PTLD). Given the significant morbidity associated with EBV in high-risk populations, there is a need to develop vaccine strategies that restore or enhance EBV-specific immune responses. Here, we identify the EBV immediate-early protein BZLF1, a transcription factor that initiates latency to lytic cycle transition, as a potential target antigen for vaccine development. IHC assays on primary lymphoma samples from patients with PTLD and a chimeric human-murine model of EBV-driven lymphoproliferative disorder (EBV-LPD) revealed significant expression of BZLF1 protein (>10% tumor cells). Other EBV-positive lymphomas that exhibited staining for BZLF1 included lymphomatoid granulomatosis (1/3) and diffuse large B-cell lymphoma (5/10); whereas EBV(+) Hodgkin’s and EBV(+) unclassifiable lymphomas failed to demonstrate any BZLF1 signal. To examine the immunomodulatory properties of BZLF1, PBMCs were isolated from 24 healthy, EBV-seropositive donors of various HLA types and cultured in vitro with adenovirus encoding recombinant BZLF1 (rAd5F35/BZLF1) or null control (rAd5F35/null) for 18 hrs. Quantification of the number of IFN-γ secreting cells by ELISPOT revealed increased immune activation in response to BZLF1 exposure in the majority (20/24) of donors. These results led us to hypothesize that enhanced recognition of BZLF1 by antigen-specific cellular immunity may provide a protective effect against EBV. To address this, we next investigated whether DCs loaded with recombinant BZLF1 protein could mediate the expansion of BZLF1-specific CD8(+) T-cells in vitro. DCs were generated in vitro from healthy PBMC monocytes. Coculture of rBZLF1-loaded DCs and autologous PBMCs led to increased frequencies of BZLF1-specific CD8(+) T-cells as determined by tetramer flow assays. To determine whether BZLF1 vaccination could prime BZLF1-specific T-cell immunity in vivo, SCID mice depleted of murine NK cells were engrafted with EBV-positive PBMCs (hu-PBL-SCID) and injected simultaneously with rBZLF1 (100 µg/mouse). Four weeks post-vaccination, ex vivo splenocytes were reexposed to BZLF1-presenting DCs in vitro and assayed for IFN-γ secretion by ELISPOT. In comparison to vehicle, vaccination with rBZLF1 alone significantly enhanced BZLF1-specific IFN-γ responses (p=0.0007, n=3). In order to generate broader, more sustained immune responses against BZLF1, we next explored BZLF1 virally-transduced DC vaccination as a potential approach to prevent EBV-LPD. Monocyte-derived DCs were infected with rAd5F35/BZLF1 or rAd5F35/null (MOI=10) and cocultured with autologous PBMCs for 7 days. Exposure to BZLF1-transduced DCs induced a robust expansion of BZLF1-specific CD8(+) cells that was comparatively higher than recombinant protein presentation. Finally, we examined whether vaccination of hu-PBL-SCID mice with rAd5F35/BZLF1-transduced DCs would positively enhance cellular immunity and improve survival against fatal EBV-LPD. Hu-PBL-SCID mice were injected IP with 5 x 106 BZLF1-transduced DCs (or control). Mice in the “booster group” received a second dose of either rAd5F35/BZLF1 (or control) DCs as a booster. Five weeks post-vaccination, ex-vivo splenocytes were cultured 1:1 with autologous lymphoblastoid cell lines (LCLs) and assayed for IFN-γ secretion by ELISPOT. Mice vaccinated with rAd5F35/BZLF1-transduced DCs showed significantly higher responsiveness to LCLs relative to vector control mice (p<0.0001, n=3). Furthermore, single vaccination with BZLF1-transduced DCs showed a trend toward improved survival (p=0.085, n=10); however, vaccination followed by booster delivery at 2 weeks significantly delayed the development of EBV-LPD (p=0.014, n=10, median survival: rAd5F35/BZLF1, 62 days; rAd5F35/null, 48 days). These findings identify BZLF1 as a candidate target protein in the immunosurveillance of EBV and provide rationale for considering BZLF1 in vaccine strategies to enhance primary and recall immune responses and potentially prevent EBV-associated diseases. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Samuel Ken-En Gan ◽  
Ser-Xian Phua ◽  
Joshua Yi Yeo

The target of an antibody plays a significant role in the success of antibody-based therapeutics and diagnostics, and to an extent, that of vaccine development. This importance is focussed on the target binding site &ndash; epitope, that sagacious epitope selection in a form of design thinking beyond traditional antigen selection using whole cell or whole protein immunisation can positively improve success. Intrinsic factors that can affect the functioning of resulting antibodies can be more easily selected for with purified recombinant protein production and peptide synthesis to display limited/selected epitopes. Many of these factors stem from the location of the epitope that can affect the accessibility of the antibody to the epitope at a cellular or molecular level, direct inhibition of target antigen activity, conservation of function despite escape mutations, and even non-competitive inhibition sites. Through the incorporation of novel computational methods for predicting antigen changes to model-informed drug design development, superior vaccines and antibody-based therapeutics or diagnostics can now be more easily designed, mitigating failures. With detailed examples, this review highlights the new opportunities, factors and methods of predicting antigenic changes for consideration in sagacious epitope selection.


2021 ◽  
Author(s):  
Alexandr S. Golota ◽  
Dmitry A. Vologzhanin ◽  
Tatyana A. Kamilova ◽  
Olga V. Shneider ◽  
Sergei G. Sherbak

Genetic variability of population may explain different individual immune responses to the SARS-CoV-2 virus. The use of genome-based technologies makes it possible to develop vaccines by optimizing target antigens. The conventional approach to the development of attenuated or inactivated vaccines sometimes fail to provide potential immunity to the target antigen and has raised safety concerns in many preclinical and clinical trials. Subunit vaccines, such as those predicted by in silico research, can overcome these difficulties. The computer modeling methodology provides the scientific community with a more complete list of immunogenic peptides, including a number of new and cross-reactive candidates. Studies conducted independently of each other with different approaches provide a high degree of confidence in the reproducibility of results. Computer forecasting plays an important role in a quick and cost-effective solution to prevent further spread and ultimately eliminate the pandemic. Most of the effort to develop vaccines and drugs against SARS-CoV-2 is directed towards the thorn glycoprotein (protein S), a major inducer of neutralizing antibodies. Several vaccines have been shown to be effective in preclinical studies and have undergone clinical trials to combat COVID-19 infection. This review presents the profile of in silico predicted immunogenic peptides of the SARS-CoV-2 virus for subsequent functional validation and vaccine development, highlights current advances in the development of subunit vaccines to combat COVID-19, taking into account the experience that has been previously achieved with SARS-CoV and MERS-CoV. Immunoinformatics techniques reduce the time and cost of developing vaccines that together can stop this new viral infection.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 973
Author(s):  
Quyen-Thi Nguyen ◽  
Young-Ki Choi

Traditional influenza vaccines generate strain-specific antibodies which cannot provide protection against divergent influenza virus strains. Further, due to frequent antigenic shifts and drift of influenza viruses, annual reformulation and revaccination are required in order to match circulating strains. Thus, the development of a universal influenza vaccine (UIV) is critical for long-term protection against all seasonal influenza virus strains, as well as to provide protection against a potential pandemic virus. One of the most important strategies in the development of UIVs is the selection of optimal targeting antigens to generate broadly cross-reactive neutralizing antibodies or cross-reactive T cell responses against divergent influenza virus strains. However, each type of target antigen for UIVs has advantages and limitations for the generation of sufficient immune responses against divergent influenza viruses. Herein, we review current strategies and perspectives regarding the use of antigens, including hemagglutinin, neuraminidase, matrix proteins, and internal proteins, for universal influenza vaccine development.


2004 ◽  
Vol 78 (9) ◽  
pp. 4638-4645 ◽  
Author(s):  
Tae Woo Kim ◽  
Jin Hyup Lee ◽  
Chien-Fu Hung ◽  
Shiwen Peng ◽  
Richard Roden ◽  
...  

ABSTRACT Severe acute respiratory syndrome (SARS) is a serious threat to public health and the economy on a global scale. The SARS coronavirus (SARS-CoV) has been identified as the etiological agent for SARS. Thus, vaccination against SARS-CoV may represent an effective approach to controlling SARS. DNA vaccines are an attractive approach for SARS vaccine development, as they offer many advantages over conventional vaccines, including stability, simplicity, and safety. Our investigators have previously shown that DNA vaccination with antigen linked to calreticulin (CRT) dramatically enhances major histocompatibility complex class I presentation of linked antigen to CD8+ T cells. In this study, we have employed this CRT-based enhancement strategy to create effective DNA vaccines using SARS-CoV nucleocapsid (N) protein as a target antigen. Vaccination with naked CRT/N DNA generated the most potent N-specific humoral and T-cell-mediated immune responses in vaccinated C57BL/6 mice among all of the DNA constructs tested. Furthermore, mice vaccinated with CRT/N DNA were capable of significantly reducing the titer of challenging vaccinia virus expressing the N protein of the SARS virus. These results show that a DNA vaccine encoding CRT linked to a SARS-CoV antigen is capable of generating strong N-specific humoral and cellular immunity and may potentially be useful for control of infection with SARS-CoV.


2015 ◽  
Vol 3 (7) ◽  
pp. 787-794 ◽  
Author(s):  
Alex S. Hartlage ◽  
Tom Liu ◽  
John T. Patton ◽  
Sabrina L. Garman ◽  
Xiaoli Zhang ◽  
...  

2021 ◽  
Vol 95 (10) ◽  
Author(s):  
Haiwen Chen ◽  
Xiao Zhang ◽  
Shanshan Zhang ◽  
Xiaobing Duan ◽  
Tong Xiang ◽  
...  

ABSTRACT Glycoprotein B (gB) is an essential fusion protein for Epstein-Barr virus (EBV) infection of both B cells and epithelial cells and is thus a promising target antigen for a prophylactic vaccine to prevent or reduce EBV-associated disease. T cell responses play key roles in the control of persistent EBV infection and the efficacy of a vaccine. However, to date, T cell responses to gB have been characterized for only a limited number of human leukocyte antigen (HLA) alleles. Here, we screened gB T cell epitopes in 23 healthy EBV carriers and 10 patients with nasopharyngeal cancer (NPC) using a peptide library spanning the entire gB sequence. We identified 12 novel epitopes in the context of seven new HLA restrictions that are common in Asian populations. Two epitopes, gB214–223 and gB840–849, restricted by HLA-B*58:01 and -B*38:02, respectively, elicited specific CD8+ T cell responses to inhibit EBV-driven B cell transformation. Interestingly, gB-specific CD8+ T cells were more frequent in healthy viral carriers with EBV reactivation than in those without EBV reactivation, indicating that EBV reactivation in vivo stimulates both humoral (VCA-gp125-IgA) and cellular responses to gB. We further found that most gB epitopes are conserved among different EBV strains. Our study broadens the diversity and HLA restrictions of gB epitopes and suggests that gB is a common target of T cell responses in healthy viral carriers with EBV reactivation. In particular, the precisely mapped and conserved gB epitopes provide valuable information for prophylactic vaccine development. IMPORTANCE T cells are crucial for the control of persistent EBV infection and the development of EBV-associated diseases. The EBV gB protein is essential for virus entry into B cells and epithelial cells and is thus a target antigen for vaccine development. Understanding T cell responses to gB is important for subunit vaccine design. Here, we comprehensively characterized T cell responses to full-length gB. Our results expand the available gB epitopes and HLA restrictions, particularly those common in Asian populations. Furthermore, we showed that gB-specific CD8+ T cells inhibit B cell transformation ex vivo and that gB-specific CD8+ T cell responses in vivo may be associated with intermittent EBV reactivation in asymptomatic viral carriers. These gB epitopes are highly conserved among geographically separated EBV strains. Precisely mapped and conserved T cell epitopes may contribute to immune monitoring and the development of a gB subunit vaccine.


2020 ◽  
Author(s):  
Amarin Rittipornlertrak ◽  
Boondarika Nambooppha ◽  
Anucha Muenthaisong ◽  
Veerasak Punyapornwithaya ◽  
Saruda Tiwananthagorn ◽  
...  

Abstract Background Bovine babesiosis caused by Babesia bovis (B. bovis) affects the cattle industry worldwide with high mobility and mortality. Live-attenuated vaccines are currently used in some of the endemic countries, but their wide use is limited due to various reasons. Although recombinant vaccines have been proposed as an alternative to the live vaccines, such vaccines are not commercially available to date. Apical membrane antigen-1 (AMA-1) is one of the leading candidates for vaccine development against diseases caused by apicomplexan parasite species. In this study, we predicted an epitope from the plasminogen, apple and nematode (PAN) motif of domain I in the B. bovis AMA-1 (BbAMA-1) using a combination of linear and conformational B-cell epitope prediction software. The selected epitope was bioinformatically analyzed, synthesized as a peptide (sBbAMA-1), and then used to immunize a rabbit. Results The anti-sBbAMA-1 serum obtained was evaluated for its growth- and invasion-inhibitory effects on B. bovis merozoites in vitro. Our results demonstrated that the predicted BbAMA-1 epitope, which is located on surface-exposed α-helix of PAN motif in domain I at the apex area, elicits antibodies capable of recognizing the native BbAMA-1 in immunoassays. Importantly, as compared to the control groups, the rabbit anti-sBbAMA-1 serum at dilution of 1:5 significantly inhibited (p < 0.05) the growth of B. bovis merozoites by approximately 50–70% on day 3 and 4 of cultivation and the invasion of merozoites by approximately 60% within 4 h of incubation. Conclusion Our results indicate the epitope predicted from the PAN motif of BbAMA-1 domain I is neutralization-sensitive and may serve as a target antigen for vaccine development against bovine babesiosis caused by B. bovis.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2311-2311 ◽  
Author(s):  
Kurtis J. Haro ◽  
Marta Gomez-Nunez ◽  
Tao Dao ◽  
Deming Chau ◽  
Annie Won ◽  
...  

Abstract Wilms tumor protein (WT1) is a transcription factor selectively over expressed in several types of leukemia and solid tumors, making it a promising potential target antigen for immunotherapy. Several open clinical trials use native or altered peptide sequences derived from the WT1 protein in order to overcome the weak immunogenicity of the self-antigen. Here we report a new strategy to circumvent tolerance by designing peptides that incorporate non-natural amino acids into the native sequence of WT1 peptides. Starting from the nonamer sequences WT1 187–195 and WT1 235–243, eight peptides containing natural amino acids and nine peptides in which different chemical modifications (fluorination, photo-reactive azido groups or benzophenone groups) were introduced at major histocompatibility complex (MHC) and T cell receptor binding positions, were synthesized. The new non-natural peptides could stabilize MHC class I molecules better than the native sequences and were also able to elicit strong specific T-cell responses. Photo-reactive peptides were additionally modified with biotin handles to allow streptavidin-biotin pull down and western blot analysis of kinetics of binding and catabolism. Upon UV irradiation, these peptides covalently bound to MHC molecules on the live cells; clearance of the peptide-MHC covalent complex occurred over 24 hours, consistent with the T2 thermo-stabilization data for the same peptide. Further catabolic studies may elucidate the important or novel cellular proteins involved in antigenic peptide processing and cross presentation and should aid in vaccine development. We are investigating whether covalent interaction with the MHC may lead to alterations in immune responses as well. T cells stimulated with one of the synthetic peptides (WT1J-W4WF) cross-reacted with the native WT1J sequence and were able to kill WT1 positive HLA-A0201 matched acute lymphoblastic leukemia cell lines. In conclusion, this study shows that peptides with non-natural amino acids can be successfully incorporated into T cell epitopes to provide increased immunogenicity and novel biological information.


Sign in / Sign up

Export Citation Format

Share Document