scholarly journals T Cell Epitope Screening of Epstein-Barr Virus Fusion Protein gB

2021 ◽  
Vol 95 (10) ◽  
Author(s):  
Haiwen Chen ◽  
Xiao Zhang ◽  
Shanshan Zhang ◽  
Xiaobing Duan ◽  
Tong Xiang ◽  
...  

ABSTRACT Glycoprotein B (gB) is an essential fusion protein for Epstein-Barr virus (EBV) infection of both B cells and epithelial cells and is thus a promising target antigen for a prophylactic vaccine to prevent or reduce EBV-associated disease. T cell responses play key roles in the control of persistent EBV infection and the efficacy of a vaccine. However, to date, T cell responses to gB have been characterized for only a limited number of human leukocyte antigen (HLA) alleles. Here, we screened gB T cell epitopes in 23 healthy EBV carriers and 10 patients with nasopharyngeal cancer (NPC) using a peptide library spanning the entire gB sequence. We identified 12 novel epitopes in the context of seven new HLA restrictions that are common in Asian populations. Two epitopes, gB214–223 and gB840–849, restricted by HLA-B*58:01 and -B*38:02, respectively, elicited specific CD8+ T cell responses to inhibit EBV-driven B cell transformation. Interestingly, gB-specific CD8+ T cells were more frequent in healthy viral carriers with EBV reactivation than in those without EBV reactivation, indicating that EBV reactivation in vivo stimulates both humoral (VCA-gp125-IgA) and cellular responses to gB. We further found that most gB epitopes are conserved among different EBV strains. Our study broadens the diversity and HLA restrictions of gB epitopes and suggests that gB is a common target of T cell responses in healthy viral carriers with EBV reactivation. In particular, the precisely mapped and conserved gB epitopes provide valuable information for prophylactic vaccine development. IMPORTANCE T cells are crucial for the control of persistent EBV infection and the development of EBV-associated diseases. The EBV gB protein is essential for virus entry into B cells and epithelial cells and is thus a target antigen for vaccine development. Understanding T cell responses to gB is important for subunit vaccine design. Here, we comprehensively characterized T cell responses to full-length gB. Our results expand the available gB epitopes and HLA restrictions, particularly those common in Asian populations. Furthermore, we showed that gB-specific CD8+ T cells inhibit B cell transformation ex vivo and that gB-specific CD8+ T cell responses in vivo may be associated with intermittent EBV reactivation in asymptomatic viral carriers. These gB epitopes are highly conserved among geographically separated EBV strains. Precisely mapped and conserved T cell epitopes may contribute to immune monitoring and the development of a gB subunit vaccine.

2017 ◽  
Vol 91 (20) ◽  
Author(s):  
Dominik Schöne ◽  
Camilla Patrizia Hrycak ◽  
Sonja Windmann ◽  
Dennis Lapuente ◽  
Ulf Dittmer ◽  
...  

ABSTRACT Adenovirus (Ad)-based immunization is a popular approach in vaccine development, and Ad-based vectors are renowned for their potential to induce strong CD8+ T cell responses to the encoded transgene. Surprisingly, we previously found in the mouse Friend retrovirus (FV) model that Ad-based immunization did not induce CD8+ T cell responses to the FV Leader-Gag-derived immunodominant epitope GagL85–93. We show now that induction of GagL85–93-specific CD8+ T cells was highly effective when leader-Gag was delivered by plasmid DNA immunization, implying a role for Ad-derived epitopes in mediating unresponsiveness. By immunizing with DNA constructs encoding strings of GagL85–93 and the two Ad-derived epitopes DNA-binding protein418–426 (DBP418–426) and hexon486–494, we confirmed that Ad epitopes prevent induction of GagL85–93-specific CD8+ T cells. Interestingly, while DBP418–426 did not interfere with GagL85–93-specific CD8+ T cell induction, the H-2Dd-restricted hexon486–494 suppressed the CD8+ T cell response to the H-2Db-restricted GagL85–93 strongly in H-2b/d mice but not in H-2b/b mice. This finding indicates that competition occurs at the level of responding CD8+ T cells, and we could indeed demonstrate that coimmunization with an interleukin 2 (IL-2)-encoding plasmid restored GagL85–93-specific CD8+ T cell responses to epitope strings in the presence of hexon486–494. IL-2 codelivery did not restore GagL85–93 responsiveness in Ad-based immunization, however, likely due to the presence of further epitopes in the Ad vector. Our findings show that seemingly immunodominant transgene epitopes can be dominated by Ad-derived epitopes. These findings underline the importance of thorough characterization of vaccine vectors, and modifications of vectors or immunogens may be required to prevent impaired transgene-specific immune responses. IMPORTANCE Ad-based vectors are widely used in experimental preclinical and clinical immunization studies against numerous infectious agents, such as human immunodeficiency virus, Ebola virus, Plasmodium falciparum, or Mycobacterium tuberculosis. Preexisting immunity to Ad-based vectors is widely recognized as a hindrance to the widespread use of Ad-based vectors for immunizations in humans; however, our data show that an immune response to Ad-derived T cell epitopes can also result in loss or impairment of transgene-specific immune responses in prenaive vaccinees due to immune competition. Our results highlight that seemingly immunodominant epitopes may be affected by dominance of vector-derived epitopes, and modifications of the vector design or the immunogens employed in immunization may lead to more effective vaccines.


2006 ◽  
Vol 81 (2) ◽  
pp. 934-944 ◽  
Author(s):  
Markus Cornberg ◽  
Brian S. Sheridan ◽  
Frances M. Saccoccio ◽  
Michael A. Brehm ◽  
Liisa K. Selin

ABSTRACT Live vaccinia virus (VV) vaccination has been highly successful in eradicating smallpox. However, the mechanisms of immunity involved in mediating this protective effect are still poorly understood, and the roles of CD8 T-cell responses in primary and secondary VV infections are not clearly identified. By applying the concept of molecular mimicry to identify potential CD8 T-cell epitopes that stimulate cross-reactive T cells specific to lymphocytic choriomeningitis virus (LCMV) and VV, we identified after screening only 115 peptides two VV-specific immunogenic epitopes that mediated protective immunity against VV. An immunodominant epitope, VV-e7r130, did not generate cross-reactive T-cell responses to LCMV, and a subdominant epitope, VV-a11r198, did generate cross-reactive responses to LCMV. Infection with VV induced strong epitope-specific responses which were stable into long-term memory and peaked at the time virus was cleared, consistent with CD8 T cells assisting in the control of VV. Two different approaches, direct adoptive transfer of VV-e7r-specific CD8 T cells and prior immunization with a VV-e7r-expressing ubiquitinated minigene, demonstrated that memory CD8 T cells alone could play a significant role in protective immunity against VV. These studies suggest that exploiting cross-reactive responses between viruses may be a useful tool to complement existing technology in predicting immunogenic epitopes to large viruses, such as VV, leading to a better understanding of the role CD8 T cells play during these viral infections.


2021 ◽  
Author(s):  
Leonardo Estrada ◽  
Didem Agac Cobanoglu ◽  
Aaron Wise ◽  
Robert Maples ◽  
Murat Can Cobanoglu ◽  
...  

Viral infections drive the expansion and differentiation of responding CD8+ T cells into variegated populations of cytolytic effector and memory cells. While pro-inflammatory cytokines and cell surface immune receptors play a key role in guiding T cell responses to infection, T cells are also markedly influenced by neurotransmitters. Norepinephrine is a key sympathetic neurotransmitter, which acts to suppress CD8 + T cell cytokine secretion and lytic activity by signaling through the beta2-adrenergic receptor (ADRB2). Although ADRB2 signaling is considered generally immunosuppressive, its role in regulating differentiation of effector T cells in response to infection has not been investigated. Using an adoptive transfer approach, we compared the expansion and differentiation of wild type (WT) to Adrb2-/- CD8 + T cells throughout the primary response to vesicular stomatitis virus (VSV) infection in vivo. We measured the dynamic changes in transcriptome profiles of antigen-specific CD8 + T cells as they responded to VSV. Within the first 7 days of infection, WT cells out-paced the expansion of Adrb2-/- cells, which correlated with reduced expression of IL-2 and the IL-2Ralpha; in the absence of ADRB2. RNASeq analysis identified over 300 differentially expressed genes that were both temporally regulated following infection and selectively regulated in WT vs Adrb2-/- cells. These genes contributed to major transcriptional pathways including cytokine receptor activation, signaling in cancer, immune deficiency, and neurotransmitter pathways. By parsing genes within groups that were either induced or repressed over time in response to infection, we identified three main branches of genes that were differentially regulated by the ADRB2. These gene sets were predicted to be regulated by specific transcription factors involved in effector T cell development, such as Tbx21 and Eomes. Collectively, these data demonstrate a significant role for ADRB2 signaling in regulating key transcriptional pathways during CD8 + T cells responses to infection that may dramatically impact their functional capabilities and downstream memory cell development.


2008 ◽  
Vol 82 (23) ◽  
pp. 11734-11741 ◽  
Author(s):  
Courtney Dow ◽  
Carla Oseroff ◽  
Bjoern Peters ◽  
Courtney Nance-Sotelo ◽  
John Sidney ◽  
...  

ABSTRACT Activation of CD4+ T cells helps establish and sustain other immune responses. We have previously shown that responses against a broad set of nine CD4+ T-cell epitopes were present in the setting of lymphocytic choriomeningitis virus (LCMV) Armstrong infection in the context of H-2d. This is quite disparate to the H-2b setting, where only two epitopes have been identified. We were interested in determining whether a broad set of responses was unique to H-2d or whether additional CD4+ T-cell epitopes could be identified in the setting of the H-2b background. To pursue this question, we infected C57BL/6 mice with LCMV Armstrong and determined the repertoire of CD4+ T-cell responses using overlapping 15-mer peptides corresponding to the LCMV Armstrong sequence. We confirmed positive responses by intracellular cytokine staining and major histocompatibility complex (MHC)-peptide binding assays. A broad repertoire of responses was identified, consisting of six epitopes. These epitopes originate from the nucleoprotein (NP) and glycoprotein (GP). Out of the six newly identified CD4+ epitopes, four of them also stimulate CD8+ T cells in a statistically significant manner. Furthermore, we assessed these CD4+ T-cell responses during the memory phase of LCMV Armstrong infection and after infection with a chronic strain of LCMV and determined that a subset of the responses could be detected under these different conditions. This is the first example of a broad repertoire of shared epitopes between CD4+ and CD8+ T cells in the context of viral infection. These findings demonstrate that immunodominance is a complex phenomenon in the context of helper responses.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A143-A143
Author(s):  
Dharmeshkumar Patel ◽  
Dharmeshkumar Patel ◽  
Angshumala Goswami ◽  
Vitaly Balan ◽  
Zhifen Yang ◽  
...  

BackgroundThe application of CRISPR-Cas9 for personalized medicine is potentially revolutionary for the treatment of several diseases including cancer. However, the bacterial origin of the Cas9 protein raises concerns about immunogenicity. Recent ELISA-based assays detected antibodies against Cas9 from Streptococcus pyogenes (SpCas9) and Staphylococcus aureus (SaCas9) in 5–10% of sera from 343 normal healthy individuals.1,2 SpCas9-specific memory CD8 T cell responses were not demonstrated in those individuals. To date, there are no conclusive studies assessing whether CRISPR-Cas9-modified CAR-T could raise CD8 T cell-mediated immunogenicity in humans. Refuge CAR-T cell platform employs an inducible, non-gene editing, nuclease deactivated Cas9 (dCas9) to modulate gene expression in response to external stimuli such as antigen-dependent CAR signaling to suppress PD-1 expression.MethodsIn the present study, we analyzed two putative HLA-A*02:01 and two HLA-B*07:02-associated SpCas9 T cell epitopes. The candidate epitopes were derived from a prediction algorithm that incorporates T cell receptor contact residue hydrophobicity and HLA binding affinity. We engaged in-vitro sensitization (IVS) assay to identify immunogenic potential of dCas9 peptides.ResultsAutologous IVS assay of T cells in two healthy donor PBMCs identified CD8-T cell responses after two rounds of stimulation against only one HLA-A*02:01-associated Cas9 peptide (sequence NLIALSLGL) P1– while the other candidate epitopes did not elicit any response. Dextramer analysis demonstrated that 15% of CD8+ T cells were specific for P1 and ~11% of CD8+ cells produced INFG upon challenge with P1-loaded T2 cells.ConclusionsOur in-vitro sensitization assay was able to demonstrate that dCas9 epitope P1 is immunogenic and may elicit adaptive immune response against gene edited CAR-T cells. Endogenous processing and presentation of P1 and other putative epitopes by Refuge CAR-T cells are currently being analyzed.AcknowledgementsRefuge Biotechnologies Inc. Menlo Park, California, 94025Trial RegistrationN/AEthics ApprovalN/AConsentN/AReferencesSimhadri VL, McGill J, McMahon S, Wang J, Jiang H, Sauna ZE. Prevalence of Pre-existing Antibodies to CRISPR-Associated Nuclease Cas9 in the USA Population. Mol Ther Methods Clin Dev 2018;10:105–112. Published 2018 Jun 15. doi:10.1016/j.omtm.2018.06.006Ferdosi SR, Ewaisha R, Moghadam F, et al. Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat Commun2019;10(1):1842. Published 2019 Apr 23. doi:10.1038/s41467-019-09693-x


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 318-318 ◽  
Author(s):  
Lequn Li ◽  
Hui Wang ◽  
Vassiliki A. Boussiotis

Abstract Cell cycle re-entry of quiescent T lymphocytes is required for generation of productive T cell responses. Cyclin-dependent kinases (cdk), particularly cdk2, have an essential role in cell cycle re-entry. Cdk2 promotes phosphorylation of Rb and related pocket proteins thereby reversing their ability to sequester E2F transcription factors. Besides Rb, cdk2 phosphorylates Smad2 and Smad3. Smad3 inhibits cell cycle progression from G1 to S phase, and impaired phosphorylation on the cdk-mediated sites renders it more effective in executing this function. In contrast, cdk-mediated phosphorylation of Smad3 reduces Smad3 transcriptional activity and antiproliferative function. Recently, we determined that induction of T cell tolerance resulted in impaired cdk2 activity, leading to reduced levels of Smad3 phosphorylation on cdk-specific sites and increased Smad3 antiproliferative function due to upregulation of p15. We hypothesized that pharmacologic inhibition of cdk2 during antigen-mediated T cell stimulation might provide an effective strategy to control T cell expansion and induce tolerance. (R)-roscovitine (CYC202) is a potent inhibitor of cdk2-cyclin E, which in higher concentrations also inhibits other cdk-cyclin complexes including cdk7, cdk9 and cdk5. It is currently in clinical trials as anticancer drug and recently was shown to induce long-lasting arrest of murine polycystic kidney disease. We examined the effect of roscovitine on T cell responses in vitro and in vivo. We stimulated C57BL/6 T cells with anti-CD3-plus-anti-CD28 mAbs, DO11.10 TCR-transgenic T cells with OVA peptide or C57BL/6 T cells with MHC disparate Balb/c splenocytes. Addition of roscovitine in these cultures resulted in blockade of cell proliferation without induction of apoptosis. Biochemical analysis revealed that roscovitine prevented phosphorylation of cdk2, downregulation of p27, phosphorylation of Rb and synthesis of cyclin A, suggesting an effective G1/S cell cycle block. To determine whether roscovitine could also inhibit clonal expansion of activated T cells in vivo, we employed a mouse model of GvHD. Recipient (C57BL/6 x DBA/2) F1 mice were lethally irradiated and were subsequently infused with bone marrow cells and splenocytes, as source of allogeneic T cells, from parental C57BL/6 donors. Roscovitine or vehicle-control was given at the time of allogeneic BMT and on a trice-weekly basis thereafter for a total of three weeks. Administration of roscovitine protected against acute GvHD resulting in a median survival of 49 days in the roscovitine-treated group compared to 24 days in the control group (p=0.005), and significantly less weight loss. Importantly, roscovitine treatment had no adverse effects on engraftment, resulting in full donor chimerism in the treated mice. To examine whether tolerance had been induced by in vivo treatment with roscovitine, we examined in vitro rechallenge responses. While control C57BL/6 T cells exhibited robust responses when stimulated with (C57BL/6 x DBA/2) F1 splenocytes, responses of T cells isolated from roscovitine-treated recipients against (C57BL/6 x DBA/2) F1 splenocytes were abrogated. These results indicate that roscovitine has direct effects on preventing TCR-mediated clonal expansion in vitro and in vivo and may provide a novel therapeutic approach for control of GvHD.


2004 ◽  
Vol 72 (12) ◽  
pp. 7240-7246 ◽  
Author(s):  
Marion Pepper ◽  
Florence Dzierszinski ◽  
Amy Crawford ◽  
Christopher A. Hunter ◽  
David Roos

ABSTRACT The study of the immune response to Toxoplasma gondii has provided numerous insights into the role of T cells in resistance to intracellular infections. However, the complexity of this eukaryote pathogen has made it difficult to characterize immunodominant epitopes that would allow the identification of T cells with a known specificity for parasite antigens. As a consequence, analysis of T-cell responses to T. gondii has been based on characterization of the percentage of T cells that express an activated phenotype during infection and on the ability of these cells to produce cytokines in response to complex mixtures of parasite antigens. In order to study specific CD4+ T cells responses to T. gondii, recombinant parasites that express a truncated ovalbumin (OVA) protein, in either a cytosolic or a secreted form, were engineered. In vitro and in vivo studies reveal that transgenic parasites expressing secreted OVA are able to stimulate T-cell receptor-transgenic OVA-specific CD4+ T cells to proliferate, express an activated phenotype, and produce gamma interferon (IFN-γ). Furthermore, the adoptive transfer of OVA-specific T cells into IFN-γ−/− mice provided enhanced protection against infection with the OVA-transgenic (but not parental) parasites. Together, these studies establish the utility of this transgenic system to study CD4+-T-cell responses during toxoplasmosis.


2010 ◽  
Vol 78 (12) ◽  
pp. 5295-5306 ◽  
Author(s):  
Steven M. Truscott ◽  
Getahun Abate ◽  
Jeffrey D. Price ◽  
Claudia Kemper ◽  
John P. Atkinson ◽  
...  

ABSTRACT Understanding the regulation of human immune responses is critical for vaccine development and treating infectious diseases. We have previously shown that simultaneous engagement of the T cell receptor (TCR) and complement regulator CD46 on human CD4+ T cells in the presence of interleukin-2 (IL-2) induces potent secretion of the immunomodulatory cytokine IL-10. These T cells mediate IL-10-dependent suppression of bystander CD4+ T cells activated in vitro with anti-CD3 and anti-CD28 costimulation, reflecting a T regulatory type 1 (Tr1)-like phenotype. However, CD46-mediated negative regulation of pathogen-specific T cells has not been described. Therefore, we studied the ability of CD46-activated human CD4+ T cells to suppress T cell responses to Mycobacterium bovis BCG, the live vaccine that provides infants protection against the major human pathogen Mycobacterium tuberculosis. Our results demonstrate that soluble factors secreted by CD46-activated human CD4+ T cells suppress mycobacterium-specific CD4+, CD8+, and γ9δ2 TCR+ T cells. Dendritic cell functions were not downregulated in our experiments, indicating that CD46-triggered factors directly suppress pathogen-specific T cells. Interestingly, IL-10 appeared to play a less pronounced role in our system, especially in the suppression of γ9δ2 TCR+ T cells, suggesting the presence of additional undiscovered soluble immunoregulatory factors. Blocking endogenous CD46 signaling 3 days after mycobacterial infection enhanced BCG-specific T cell responses in a subset of volunteers. Taken together, these results indicate that CD46-dependent negative regulatory mechanisms can impair T cell responses vital for immune defense against mycobacteria. Therefore, modulating CD46-induced immune regulation could be integral to the development of improved tuberculosis therapeutics or vaccines.


2008 ◽  
Vol 83 (3) ◽  
pp. 1501-1510 ◽  
Author(s):  
Rosemarie D. Mason ◽  
Sheilajen Alcantara ◽  
Viv Peut ◽  
Liyen Loh ◽  
Jeffrey D. Lifson ◽  
...  

ABSTRACT Practical immunotherapies for human immunodeficiency virus infection are needed. We evaluated inactivated simian immunodeficiency virus (SIV) pulsed onto fresh peripheral blood mononuclear cells in 12 pigtail macaques with chronic SIVmac251 infection for T-cell immunogenicity in a randomized cross-over design study. The immunotherapy was safe and convincingly induced high levels of SIV-specific CD4+ T-cell responses (mean, 5.9% ± 1.3% of all CD4+ T cells) and to a lesser extent SIV-specific CD8+ T-cell responses (mean, 0.7% ± 0.4%). Responses were primarily directed toward Gag and less frequently toward Env but not Pol or regulatory/accessory SIV proteins. T-cell responses against Gag were generally broad and polyfunctional, with a mean of 2.7 CD4+ T-cell epitopes mapped per animal and more than half of the SIV Gag-specific CD4+ T cells expressing three or more effector molecules. The immunogenicity was comparable to that found in previous studies of peptide-pulsed blood cells. Despite the high-level immunogenicity, no reduction in viral load was observed in the chronically viremic macaques. This contrasts with our studies of immunization with peptide-pulsed blood cells during early SIV infection in macaques. Future studies of inactivated virus-pulsed blood cell immunotherapy during early infection of patients receiving antiretroviral therapy are warranted.


Sign in / Sign up

Export Citation Format

Share Document