Metabolic Detoxification of Plant Prooxidants

Author(s):  
May R. Berenbaum
2018 ◽  
Vol 9 ◽  
Author(s):  
Esteban Scalerandi ◽  
Guillermo A. Flores ◽  
Marcela Palacio ◽  
Maria Teresa Defagó ◽  
María Cecilia Carpinella ◽  
...  

2017 ◽  
Vol 9 (7) ◽  
pp. 47
Author(s):  
Gonzalo Roca Acevedo ◽  
María Inés Picollo

Triatomines are blood-sucking bugs that occur mainly in Latin America. They are vectors of Trypanosoma cruzi, the parasite that causes Chagas disease. Chemical control of Chagas disease´s vectors by using pyrethroid insecticides has been highly successful for the elimination of domestic infestation and consequently the reduction of the vector transmission. However, at the beginning of the 2000s a decrease in the effectiveness of the chemical control of triatomines was detected in several areas from Argentina and Bolivia, particularly in the Gran Chaco eco-region.During the last 15 years, several studies demonstrated the evolution of insecticide resistance in Triatoma infestans and established the presence of different toxicological profiles, the autosomal inherence of resistance, the biological costs of deltamethrin resistance, the expression of deltamethrin resistance thorough the embryonic development, and the main mechanisms of resistance (target-site insensitivity and metabolic detoxification of insecticides).The emergence of pyrethroid resistance coupled with the usual difficulties in sustaining adequate rates of insecticide applications emphasize the need of incorporating other tools for integrated vector and disease control, such as the proposal of the organo-phosphorus insecticide fenitrothion as an alternative chemical strategy for the management of the resistance because it was effective against pyrethroid-resistant populations in laboratory and semi-field trials.New studies on the current situation of presence and spread of resistant populations of triatomines and the acceptance of the use of alternative insecticides are critical requirements in the implementation of strategies for the management of resistance and for the rational design of campaigns oriented to reducing the vector transmission of Chagas’ disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yan Qin ◽  
Shanshan Wang ◽  
Qiuyu Wen ◽  
Quan Xia ◽  
Sheng Wang ◽  
...  

Mahuang–Xingren (MX, Ephedra sinica Stapf-Prunus armeniaca L.) is a classic herb pair used in traditional Chinese medicine. This combined preparation reduces the toxicity of Xingren through the stereoselective metabolism of its main active ingredient amygdalin. However, whether stereoselectivity is important in the pharmacokinetic properties of amygdalin either in the traditional decoction or in the dispensing granules is unclear. Amygdalin is hydrolyzed to its metabolite, prunasin, which produces hydrogen cyanide by degradation of the cyano group. A comprehensive study of the metabolic pathway of amygdalin is essential to better understand the detoxification process. In this article, the potential detoxification pathway of MX is further discussed with regard to herb interactions. In this study, the pharmacokinetic parameters and metabolism of amygdalin and prunasin were investigated by comparing the traditional decoction and the dispensing granule preparations. In addition, several potential metabolites were characterized in an incubation system with rat liver microsomes or gut microbial enzymes. The combination of Xingren with Mahuang reduces exposure to D-amygdalin in vivo and contributes to its detoxification, a process that can be further facilitated in the traditional decoction. From the in vitro co-incubation model, 15 metabolites were identified and classified into cyanogenesis and non-cyanogenesis metabolic pathways, and of these, 10 metabolites were described for the first time. The level of detoxified metabolites in the MX traditional decoction was higher than that in the dispensing granules. The metabolism of amygdalin by the gut microbial enzymes occurred more rapidly than that by the rat liver microsomes. These results indicated that combined boiling both herbs during the preparation of the traditional decoction may induce several chemical changes that will influence drug metabolism in vivo. The gut microbiota may play a critical role in amygdalin metabolism. In conclusion, detoxification of MX may result 1) during the preparation of the decoction, in the boiling phase, and 2) from the metabolic pathways activated in vivo. Stereoselective pharmacokinetics and deamination metabolism have been proposed as the detoxification pathway underlying the compatibility of MX. Metabolic detoxification of amygdalin was quite different between the two combinations, which indicates that the MX decoctions should not be completely replaced by their dispensing granules.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Kuntan Wu ◽  
Minjie Liu ◽  
Huanbin Wang ◽  
Shahid Ali Rajput ◽  
Yajing Shan ◽  
...  

Most metabolites of aflatoxin B1 (AFB1), especially exo-AFB1-8,9-epoxide (AFBO), can induce the production of reactive oxygen species (ROS) to vary degrees, causing oxidative stress and liver damage, and ultimately induce liver cancer in humans and animals. Duck is one of the most sensitive animals to AFB1, and severe economic losses are caused by duck AFB1 poisoning every year, but the exact mechanism of this high sensitivity is still unclear. This review highlights significant advances in our understanding of the AFB1 metabolic activation, like cytochrome P450s (CYPs), and AFB1 metabolic detoxification, like glutathione S-transferases (GSTs) in poultry. In addition, AFB1 may have other metabolic pathways in poultry, such as the mutual conversion of AFB1 and aflatoxicol (AFL) and the process of AFBO to produce AFB1-8,9-dihydrodiol (AFB1-dhd) and further metabolize it into detoxification substances. This review also summarized some exogenous regulatory substances that can alleviate AFB1-induced oxidative stress.


2020 ◽  
Vol 113 (4) ◽  
pp. 1963-1971
Author(s):  
Tomohisa Fujii ◽  
Sachiyo Sanada-Morimura ◽  
Keiichiro Matsukura ◽  
Ho Van Chien ◽  
Le Quoc Cuong ◽  
...  

Abstract Development of insecticide resistance often changes life history traits of insect pests, because metabolic detoxification of insecticides in insect bodies requires huge energetic reserves. The brown planthopper, Nilaparvata lugens (Stål), an important insect pest of rice crop in East and Southeast Asia, has developed strong resistance to imidacloprid from mid-2000s. The aim of this study was to examine the costs of life history traits and reveal changes in energy reserves with developing imidacloprid resistance. We compared the life history traits (survival time, fecundity, developmental time, and hatchability) and total lipid content between imidacloprid-resistant and imidacloprid-susceptible (control) brown planthopper strains. As compared to the control strains, adults’ survival time of the resistant females was shorter, and their fecundity was lower; the other life history traits did not differ significantly between the resistant and control strains. As the results, net reproductive rates (R0) were lower in the resistant strains than in the susceptible strains. However, the amount of stored lipids was larger in resistant females than control ones. Our findings demonstrated a physiological trade-off between the development of imidacloprid resistance and the reproductive traits of brown planthopper. The imidacloprid-resistant strains are likely to store lipids for metabolic detoxification rather than consume them for reproduction.


2019 ◽  
Vol 112 (5) ◽  
pp. 2295-2301 ◽  
Author(s):  
Zachary C DeVries ◽  
Richard G Santangelo ◽  
Jonathan Crissman ◽  
Alonso Suazo ◽  
Madhavi L Kakumanu ◽  
...  

Abstract Despite limited efficacy data, do-it-yourself (DIY) insecticide products often promise low-cost alternatives to professional pest control. Total release foggers (TRFs, ‘bug bombs’), which are prominent DIY products, were recently shown to be ineffective at reducing German cockroach (Blattella germanica L.) infestations, in contrast to highly effective baits. However, the reason(s) for TRF failure remain unknown. Therefore, we investigated insecticide resistance of apartment-collected cockroaches from homes where TRFs failed. In topical (direct) application assays, resistance to cypermethrin (a common active ingredient in TRFs) was 202 ± 33 times that of a laboratory insecticide-susceptible population (based on LD50 ratios), while resistance to fipronil, a common bait active ingredient, was considerably lower at 14 ± 2 times that of the laboratory insecticide-susceptible population. The addition of PBO, a P450 inhibitor that synergizes pyrethroids, enhanced the efficacy of cypermethrin, but only at high doses of cypermethrin. Additionally, >96% of screened cockroaches possessed at least one copy of the L993F mutation in the voltage-gated sodium channel, known to confer resistance to pyrethroids (knockdown resistance, kdr). Because TRF treatments killed insecticide-susceptible sentinel cockroaches but failed to kill apartment-collected cockroaches, these results suggest that pyrethroid resistance is a major factor contributing to the failure of TRFs. Multiple mechanisms of resistance, including metabolic detoxification of the pyrethroids and kdr mutations that confer target-site insensitivity, suggest that TRFs would lack efficacy against German cockroaches in residential settings, where high levels of pyrethroid resistance have been documented globally.


Weed Science ◽  
1990 ◽  
Vol 38 (3) ◽  
pp. 206-214 ◽  
Author(s):  
H. Maelor Davies ◽  
Alexis Merydith ◽  
Liane Mende-Mueller ◽  
Alpo Aapola

Phenmedipham metabolism in leaf tissue of sugarbeet (tolerant) and rapeseed (sensitive) was compared. Sugarbeet leaf discs metabolized phenmedipham much more rapidly than rapeseed leaf discs, forming two metabolites of relatively low polarity. The less polar of these (metabolite 21) was a precursor to the other (metabolite 11), and its properties indicate derivation from phenmedipham by a single hydroxylation and monoglycosylation. Synthetic N-hydroxyphenmedipham was converted by both species into a compound that cochromatographs with metabolite 21. Purified metabolite 21 was much less inhibitory to light-driven oxygen evolution by isolated thylakoids of both species than was phenmedipham. Hydroxylation/glycosylation without prior carbamate hydrolysis appears to be a major factor in the tolerance of sugarbeet to phenmedipham.


Author(s):  
Clerison R Perini ◽  
Christine A Tabuloc ◽  
Joanna C Chiu ◽  
Frank G Zalom ◽  
Regis F Stacke ◽  
...  

Abstract Chrysodeixis includens (Walker, [1858]) is one of the most important defoliator of soybean in Brazil because of its extensive geographical distribution and high tolerance to insecticides compared with other species of caterpillars. Because of this, we conducted bioassays to evaluate the efficacy of pyrethroid λ-cyhalothrin on a C. includens resistant strain (MS) and a susceptible (LAB) laboratory strain. High throughput RNA sequencing (RNA-seq) of larval head and body tissues were performed to identify potential molecular mechanisms underlying pyrethroid resistance. Insecticide bioassays showed that MS larvae exhibit 28.9-fold resistance to pyrethroid λ-cyhalothrin relative to LAB larvae. RNA-seq identified evidence of metabolic resistance in the head and body tissues: 15 cytochrome P450 transcripts of Cyp6, Cyp9, Cyp4, Cyp304, Cyp307, Cyp337, Cyp321 families, 7 glutathione-S-transferase (Gst) genes, 7 α-esterase genes from intracellular and secreted catalytic classes, and 8 UDP-glucuronosyltransferase (Ugt) were overexpressed in MS as compared with LAB larvae. We also identified overexpression of GPCR genes (CiGPCR64-like and CiGPCRMth2) in the head tissue. To validate RNA-seq results, we performed RT-qPCR to assay selected metabolic genes and confirmed their expression profiles. Specifically, CiCYP9a101v1, CiCYP6ae149, CiCYP6ae106v2, CiGSTe13, CiCOE47, and CiUGT33F21 exhibited significant overexpression in resistant MS larvae. In summary, our findings detailed potential mechanisms of metabolic detoxification underlying pyrethroid resistance in C. includens.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e55475 ◽  
Author(s):  
Daibin Zhong ◽  
Xuelian Chang ◽  
Guofa Zhou ◽  
Zhengbo He ◽  
Fengyang Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document