Metal Processing at Culham

Author(s):  
I. J. Spalding
Keyword(s):  
Friction ◽  
2021 ◽  
Author(s):  
Shaoqing Xue ◽  
Hanglin Li ◽  
Yumei Guo ◽  
Baohua Zhang ◽  
Jiusheng Li ◽  
...  

AbstractWater is as an economic, eco-friendly, and efficient lubricant that has gained widespread attention for manufacturing. Using graphene oxide (GO)-based materials can improve the lubricant efficacy of water lubrication due to their outstanding mechanical properties, water dispersibility, and broad application scenarios. In this review, we offer a brief introduction about the background of water lubrication and GO. Subsequently, the synthesis, structure, and lubrication theory of GO are analyzed. Particular attention is focused on the relationship between pH, concentration, and lubrication efficacy when discussing the tribology behaviors of pristine GO. By compounding or reacting GO with various modifiers, amounts of GO-composites are synthesized and applied as lubricant additives or into frictional pairs for different usage scenarios. These various strategies of GO-composite generate interesting effects on the tribology behaviors. Several application cases of GO-based materials are described in water lubrication, including metal processing and bio-lubrication. The advantages and drawbacks of GO-composites are then discussed. The development of GO-based materials for water lubrication is described including some challenges.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2944
Author(s):  
Benjamin James Ralph ◽  
Marcel Sorger ◽  
Benjamin Schödinger ◽  
Hans-Jörg Schmölzer ◽  
Karin Hartl ◽  
...  

Smart factories are an integral element of the manufacturing infrastructure in the context of the fourth industrial revolution. Nevertheless, there is frequently a deficiency of adequate training facilities for future engineering experts in the academic environment. For this reason, this paper describes the development and implementation of two different layer architectures for the metal processing environment. The first architecture is based on low-cost but resilient devices, allowing interested parties to work with mostly open-source interfaces and standard back-end programming environments. Additionally, one proprietary and two open-source graphical user interfaces (GUIs) were developed. Those interfaces can be adapted front-end as well as back-end, ensuring a holistic comprehension of their capabilities and limits. As a result, a six-layer architecture, from digitization to an interactive project management tool, was designed and implemented in the practical workflow at the academic institution. To take the complexity of thermo-mechanical processing in the metal processing field into account, an alternative layer, connected with the thermo-mechanical treatment simulator Gleeble 3800, was designed. This framework is capable of transferring sensor data with high frequency, enabling data collection for the numerical simulation of complex material behavior under high temperature processing. Finally, the possibility of connecting both systems by using open-source software packages is demonstrated.


2021 ◽  
Vol 143 ◽  
pp. 107310
Author(s):  
Li Xing ◽  
Srinivasan Arthanari ◽  
Guan Yingchun ◽  
Seeram Ramakrishna

2021 ◽  
Vol 66 (10) ◽  
pp. 3842-3855
Author(s):  
Pavla Debeljak ◽  
Stéphane Blain ◽  
Andrew Bowie ◽  
Pier Merwe ◽  
Barbara Bayer ◽  
...  

2014 ◽  
Vol 217-218 ◽  
pp. 481-486 ◽  
Author(s):  
John L. Jorstad

Semi solid metal processing has numerous technical and economic advantages, such as viscous, non-turbulent flow (thus no air entrapment during casting), ability to fill ultra-thin sections (thus reduced part weight), little solidification shrinkage in the die (thus little or no porosity), minimum heat imparted to tooling (thus long tool life) and good response to T-5 aging (thus reduced heat treating costs). Still, SSM has never achieved a prominent position in the field of light metals casting Why? Perhaps the reason was largely the down economy of recent years and SSM will yet emerge with the prominence once expected of it.


2016 ◽  
Vol 84 ◽  
pp. 403-462 ◽  
Author(s):  
Amit Kumar Gupta ◽  
Tejveer Simha Maddukuri ◽  
Swadesh Kumar Singh
Keyword(s):  

Author(s):  
Inese Mārtiņsone ◽  
Mārīte-Ārija Baķe ◽  
Žanna Martinsone ◽  
Maija Eglīte

Possible hazards of work environment in metal processing industry in Latvia The aim of this study was to investigate risk factors in the work environment of Latvian metal processing industry using the database of the Laboratory of Hygiene and Occupational Diseases of the Institute of Occupational Safety and Environmental Health, Rīga Stradiņš University. During the period between 1996 and 2005, 703 measurements were made in metalworking enterprises. In Latvia, approximately 2.4% of the workforce is involved in the metal processing industry. Physical (noise, lighting, vibration) and chemical (abrasive dust, welding aerosol and contained metals) risk factors were analysed. In the assessed metalworking workplaces, the work environment was estimated to be of poor quality, because occupational exposure limits or recommended values were exceeded in 42% (n = 294) of cases. Noise, manganese and welding aerosols most often exceeded the occupational exposure limits or recommended values, the significance was P < 0.001, P < 0.01 and P < 0.05, respectively.


2007 ◽  
Vol 436 (1-2) ◽  
pp. 86-90 ◽  
Author(s):  
Sahrooz Nafisi ◽  
Reza Ghomashchi

Sign in / Sign up

Export Citation Format

Share Document