New Methods for On-Site Biological Monitoring of Effluent Water Quality

Author(s):  
Henry S. Gardner ◽  
William H. van der Schalie ◽  
Marilyn J. Wolfe ◽  
Robert A. Finch
2019 ◽  
Author(s):  
Chem Int

Recently, process control in wastewater treatment plants (WWTPs) is, mostly accomplished through examining the quality of the water effluent and adjusting the processes through the operator’s experience. This practice is inefficient, costly and slow in control response. A better control of WTPs can be achieved by developing a robust mathematical tool for performance prediction. Due to their high accuracy and quite promising application in the field of engineering, Artificial Neural Networks (ANNs) are attracting attention in the domain of WWTP predictive performance modeling. This work focuses on applying ANN with a feed-forward, back propagation learning paradigm to predict the effluent water quality of the Habesha brewery WTP. Data of influent and effluent water quality covering approximately an 11-month period (May 2016 to March 2017) were used to develop, calibrate and validate the models. The study proves that ANN can predict the effluent water quality parameters with a correlation coefficient (R) between the observed and predicted output values reaching up to 0.969. Model architecture of 3-21-3 for pH and TN, and 1-76-1 for COD were selected as optimum topologies for predicting the Habesha Brewery WTP performance. The linear correlation between predicted and target outputs for the optimal model architectures described above were 0.9201 and 0.9692, respectively.


2012 ◽  
Vol 518-523 ◽  
pp. 2130-2137
Author(s):  
Si Hao Lv ◽  
Hui Chang ◽  
Zhi Hui Liang ◽  
Yan Yan Zeng ◽  
Hong Bo Fan

A pilot study was carried out to evaluate the application of aerobic submerged MBR in treating polyester wastewater and a full scale system in which MBR was adopted as the key aspect was put forward to treat the polyester wastewater of Zhuhai Yuhua Polyester co., Ltd., China. The pilot study revealed that HRT could be affected by the influent COD, and a HRT larger than 36h was proposed for treating polyester wastewater by MBR. Volumetric loading rate and sludge loading rate ranged in 0.7-2.0 kgCOD/m3•d and 0.09~0.24 kgCOD/ kgMLSS•d respectively were of small influence on the COD removal. DO in the range of 2.5-4.0 mg/L seemed to be optimal for avoiding limitations due to oxygen concentration and creating an effective turbulence. The modified full scale system which includes anaerobic digesting tank and MBR followed by a stabilization pond was verified to be effective to treat the polyester wastewater in the latest two years. The results illustrated that the effluent water quality could meet the discharge limits of water pollutants (DB 44/26-2001) which was established in Guangdong, China. Observed sludge yield of the system fluctuated between 0.10-0.18 gMLSS/gCOD and averaged at 0.137 gMLSS/gCOD. The membrane permeate at around 10 L/m2h, TMP of less than 0.7bar, and total mixed liquor suspended solids (MLSS) between 6-7g/L were suitable to operate the MBR.


1983 ◽  
Vol 15 (10) ◽  
pp. 89-99
Author(s):  
Bo Møller ◽  
K I Dahl-Madsen

In the years from 1970-1982 52 site studies and monitoring studies have been carried out at major existing and planned power plants. The results from the studies have been used in a planning system for water quality. This planning system, which is water quality related, is described in this paper. An important part of the planning system is the description of size and distribution of excess temperature fields and the related biological conditions. In the biological monitoring, emphasis is placed on the benthic community as more vulnerable to the cooling water discharge. The studies have shown that the excess temperature field within the 1-2° isotherm can produce measurable changes in the benthic community. The temperature effect in the pelagic zone is marginal, however, some effects are seen at sites with a deep water intake of nutrient rich water. Entrainment of fish and Zooplankton can be important in bays and estuaries.


2013 ◽  
Vol 295-298 ◽  
pp. 1380-1383
Author(s):  
Lei Zhu ◽  
Song Liu ◽  
Xun Wang ◽  
Hong Jiao Song

A pharmaceutical factory in Wuhan produces many pharmaceutical wastewaters every day. The wastewater raw water quality indexes are: the concentration of COD,BOD5, NH3-N,TP is 300,000mg/L, 200,000mg/L, 450mg/L,900 mg/L ; By the SBBR treatment, the effluent water quality indexes are:750mg/L,350mg/L,1.20mg/L,5mg/L,and the effluent water can accord with Wastewater quality standards for discharge to municipal sewers (CJ 343-2010) and be discharged after treatment in the sewage treatment plant by municipal sewers.


1994 ◽  
Vol 29 (3) ◽  
pp. 29-35
Author(s):  
I. Bernardová ◽  
K. Mrázak ◽  
M. Škollová

To obtain a more detailed picture of the water quality changes in river longitudinal profiles, an original biological monitoring system has been developed by the Water Research Institute (WRI) in Brno. The system is based on the exact selection of representative macrozoobenthic sampling points. A precise taxonomic identification and statistical evaluation create the basis for documentation of the present water quality and consequently for a water quality simulation model. The biological monitoring system enables information from basic chemical monitoring to be enhanced, and constitutes an eco-engineering tool for the central and regional control of the water quality. A potential cost reduction, when compared to classical modelling techniques, is a benefit which cannot be ignored. The system described is applied in the watershed of the river Morava as given in this paper, as well as for the whole Czech Republic.


Sign in / Sign up

Export Citation Format

Share Document